Antibacterial activity of some medicinal plant oils against *Escherichia coli* and *Salmonella* species in -vitro

Ashraf A. Abd El Tawab¹, Fatma I. El -Hofy¹, Soad S. Belih² and Mariam M. El Shemy²

¹Bacteriology, Immunology and Mycology Department, Faculty of Veterinary Medicine Benha University. ²Animal Health Research Institute, Tanta branch

A B S T R A C T

A total of 100 samples were collected (75 samples from diseased broiler chickens and 25 samples from recently dead broiler chickens). The samples were examined bacteriological, fifty two isolates of *E.coli* (52%) and seven isolates of *Salmonellae* (7%) were found. ten random samples of *E.coli* were serogrouped where five were *E.coli* O78, two O157 and untyped and seven isolates of *salmonellae* were serotyped where three *S.Enteritidis*, one *S.Charity*, one *S.Remiremont* and two untyped . Antibacterial activity of five medicinal plant oils from Eucalyptus, Mint, Cinnamon, Garlic and Thyme were evaluated against the isolated strains using micro-titer plate to determine the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) for these oils. MIC results proved that for Mint, Cinnamon, and Garlic oils were ranged from 5-5120 µg/ml, for Eucalyptus 20-5120 µg/ml and for Thyme 5-2560 µg/ml. While results of MBC of Thyme and Cinnamon oils were ranged from 10-2560 µg/ml. but MBC of Eucalyptus ranged from 40-5120 µg, MBC of Mint and Garlic oils were ranged from 5-2560µg |ml, 20-2560µg |ml respectively.

Keywords: *E.coli*, *Salmonella*, Essential oils, MIC, MBC

1.INTODUCTION

E. coli infection is one of the serious problems that cause a great threat to the profitability of birds enterprises all over the world. Although *E. coli* is a normal inhabitant of the intestinal tract of birds, under the influence of predisposing factors, like inadequate and faulty ventilation, over crowding, hunger, thirst, extremes of temperatures become pathogenic and lead to air saculitis, pericarditis, perirhepatitis and peritonitis, also high mortality during rearing, reduced weight gain and condemnation of birds at the time of slaughter (Ewers *et al.*, 2003). The genus *Salmonellae* comprise over 2700 serotypes that are found in different hosts and environment. It can cause human illness, including enteric fever, gastroenteritis and septicemia. *Salmonella* is one of the major bacterial agents that cause food borne infections in humans worldwide (Herikstad *et al.*, 2002). Antimicrobial therapy is an important tool in reducing both the incidence and mortality associated with avian colibacillosis. However, resistance to existing antimicrobials is widespread and of concern to poultry veterinarians (Blanco *et al.*, 1998). Antimicrobial resistance originated from change in the microbial metabolism and their genetic structure .Within the last few decades, microbial resistance has emerged for most of the available agents, thus necessitating the search for newer drugs. Medicinal plant oils have been shown to possess antibacterial, antifungal, antiviral, insecticidal and antioxidant properties. Bhattacharjee *et al.*, 2005 and Raghunath, 2008.). Most the active principles of oils consists of mixtures of compounds such as phenolics and polyphenols, terpenoides, saponins, quinines, esters, flavones, flavonoids,
tannins, alkaloids and nonvolatile residues. Their chemical composition and concentration of compounds is variable. These components have many effects as antimicrobial, stimulating animal digestive systems, antioxidants, anticoccidial and increase production of digestive enzymes, also it improve utilization of digestive products by enhancing liver functions (Hernandez et al., 2009). Therefore, the present work was planned to determine the antibacterial effect of some medicinal plant oils against E. coli and salmonellae in vivo.

2. MATERIAL AND METHODS

2.1. Samples collection:
A total of 100 samples from Al-Gharbia Government were collected, (75 samples from diseased chickens suffered from diarrhea and respiratory manifestation and 25 samples from recently dead). All samples (liver, lungs, intestine, spleen and heart) were aseptically collected and transferred immediately in icebox to the laboratory.

2.2. Bacteriological examination of the samples
The samples were identified on the basis of Gram staining, after streaking onto media as MacConky's agar, EMB, XLD and S.S agar media. Each colony showed typical colonial appearance were subjected to biochemical identification and examined for indole, MR and Simmons citrate tests. The cultural characterization and biochemical screening-routine methods were used according to (Quinn et al., 2002).

2.3. Serological identification
2.3.1. Diagnostic E. coli antisera
The isolates were serogrouped using Sifin antisera which involved four vials of polyvalent and 24 vials of monovalent diagnostic E.coli antisera according to somatic (O) antigen.

2.3.2. Diagnostic Salmonella Antisera
Diagnostic polyvalent, monovalent I, II, III and monovalent Salmonella O and H (phase 1 and phase 2) antiseras (Denka Seiken co., LTD) & (Pro – lab diagnostic, U.K).

2.4. Detection of MIC and MBC of medicinal plant oils
(CLSI., 2009) by micro titre plates. Cation adjustment Muller Hinton broth, DMSO 5%, Essential oil and Resazurin dye were used. Five medicinal plant oils were used in the present study: Garlic, Thyme, Mint, Cinnamon and Eucalyptus oils are obtained from unit of essential oils in National Research Center.

3. RESULTS
A total of 100 samples were collected (75 samples from diseased broiler chickens and 25 samples from recently dead broiler chickens) from Tanta, Kotour, Basione and Kafer-Elzyat. Clinically examined birds showed signs of listlessness, ruffled feathers, labored breathing and coughing. P.M lesions were enteritis, septicemia, airsacculitis, perihepatitis, pericarditis, peritonitis, synovitis and omphalitis. The samples were examined bacteriologically which revealed Fifty two isolates of E.coli (52%) and seven isolates of Salmonella (7%) were detected, (Table1). Ten random samples of E. coli were serogrouped and revealed that five were E.coli O78, two O157 and three untyped and seven isolates of Salmonella were serotyped and revealed that three S. Enteritidis, one S. Charity, one S. Remiremont and two untyped.

MIC and MBC of each medicinal plant oils were showed in that Eucalyptus oil found to be effective against E. coli O78 and O157 by MIC 80µg /ml and 1280µg /ml respectively, and MBC at 160 µg | ml and 2560µg | ml respectively. Eucalyptus oil found to be effective against S. Enteritidis, S. Charity and S. Remiremont by MIC 20µg /ml, 5120µg /ml and 2560µg /ml respectively and MBC at 40µg | ml for S.Enteritidis and 5120 µg | ml for S.Remiremont but did not have MBC for
Antibacterial activity of some medicinal plant oils against Escherichia coli and Salmonella species

s. Charity (table 2), Mint oil found to be effective against *E. coli* O78 and O157 by MIC 320 µg/ml and 2560µg /ml respectively and MBC at 320µg/ml and 2560 µg/ml respectively, and also effective against *S. Enteritidis*, *S. Charity* and *S. Remiremont* by MIC 5µg /ml, 5120µg /ml and 2560 µg/ml respectively and MBC at 5µg /ml for *S. Enteritidis* and 2560µg /ml for *S. Remiremont* but did not have MBC for *S. Charity* (table 2). Cinamoon oil found to be effective against *E. coli* O78 and O157 by MIC 2560µg /ml and 5120µg /ml respectively and MBC at 2560 µg/ml for *E. coli* O78 only but did not have MBC for O157 and also effective against *S. Enteritidis* and *S. Remiremont* by MIC 5µg /ml and 5120 µg/ml and MBC at 10µg /ml for *S. Enteritidis* but not effective against *S. Charity* and did not have MBC for *S. Remiremont* (table 2). Garlic oil found to be effective against *E. coli* O78 and O157 by MIC 320µg /ml 1280 µg/ml respectively and MBC at 1280µg /ml and 2560 µg/ml respectively and also effective against *S. Enteritidis*, *S. Charity* and *S. Remiremont* by MIC 5µg /ml ,5120µg /ml and 160µg /ml respectively and MBC at 20µg /ml for *S. Enteritidis* and 320µg/ml for *S. Remiremont* but did not have MBC for *S. Charity* (table 2). Thymus oil found to be effective against *E. coli* O78 and O157 by MIC 2560 µg /ml and 5µg /ml respectively and MBC at 2560µg /ml and 10 µg /ml respectively and also effective against *S. Enteritidis* and *S. Remiremont* by MIC 320µg /ml and by MBC at 320 µg /ml but not effective against *S. Charity* (table, 2)

Table (1): Prevalence of *E. coli* and *Salmonella* species infection in chickens

<table>
<thead>
<tr>
<th></th>
<th>No. of collected samples</th>
<th>No. of positive samples</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>E.coli</td>
<td>Salmonella</td>
</tr>
<tr>
<td>Disease birds</td>
<td></td>
<td></td>
</tr>
<tr>
<td>75</td>
<td>48</td>
<td>64</td>
</tr>
<tr>
<td>Recently dead birds</td>
<td>25</td>
<td>4</td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
<td>52</td>
</tr>
</tbody>
</table>

Table (2): Minimum inhibitory concentrations (MICS) and Minimum bactericidal concentrations (MBCS) results of medicinal plant oils against *E.coli* and *Salmonella* species.

<table>
<thead>
<tr>
<th>Strains</th>
<th>Eucalyptus</th>
<th>Mint</th>
<th>Cinnamon</th>
<th>Garlic</th>
<th>Thyme</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MIC µg/ml</td>
<td>MBC µg/ml</td>
<td>MIC µg/ml</td>
<td>MBC µg/ml</td>
<td>MIC µg/ml</td>
</tr>
<tr>
<td>E. coli O78</td>
<td>80</td>
<td>160</td>
<td>320</td>
<td>320</td>
<td>2560</td>
</tr>
<tr>
<td>E. coli O157</td>
<td>1280</td>
<td>2560</td>
<td>2560</td>
<td>2560</td>
<td>5120</td>
</tr>
<tr>
<td>S. Enteritidis</td>
<td>20</td>
<td>40</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>S. Charity</td>
<td>5120</td>
<td>-</td>
<td>5120</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>S. Remiremont</td>
<td>2560</td>
<td>5120</td>
<td>2560</td>
<td>5120</td>
<td>-</td>
</tr>
</tbody>
</table>
4. DISCUSSION

Medicinal Plant oils and extracts have been used in food preservation, pharmaceuticals, alternative medicine and natural therapies (Reynolds, (1996) and Lis-Balchin and Deans (1997). In the present study, 52 isolates of E.coli were isolated from 100 samples (75 samples from diseased broiler chickens and 25 samples from recently dead). This result was nearly similar to that recorded by Akond et al., (2009) and Wafaa, (2012). In addition, seven isolates of Salmonella (7%) were isolated. The obtained result was nearly similar to that recorded by Abd-Allah (1991). In the current study ten random samples of E.coli were serogrouped five were E. coli O78, two O157 and three untyped, the results agreed to Taha (2002) and Marwah et al., (2010). Concerning to serotyping for seven isolates of Salmonella revealed that three S.Enteritidis, one S.Charity, one S.Remiremont and two untyped. These results supported by Marin and Lainez (2009) who recorded that S.Enteritidis was the most prevalent serotype isolated from broiler. Eucalyptus oil found to be effective against E.coli O78 and O157 by MIC 80 µg /ml and 1280 µg /ml respectively and MBC at 160 µg /ml and 2560µg / ml respectively. Also effective against S.Enteritidis, S.Charity and S.Remiremont by MIC 20µg /ml, 5120µg /ml and 2560µg / ml respectively. MBC at 40µg/ml for S.Enteritidis and 5120 µg/ml for S.Remiremont but did not have MBC for S.Charity. These results agreed with Ayepola and Adeniyi, (2008). Mint oil found to be effective against E. coli O78 and O157 by MIC 320 µg/ml and 2560 µg /ml respectively and MBC at 320 µg/ml and 2560 µg/ml respectively and also effective against S. Enteritidis, S. Charity and S. Remiremont by MIC 5µg /ml, 5120µg /ml and 2560 µg/ml respectively. MBC at 5µg/ml for S. Enteritidis 2560 µg/ml and 320 µg/ml for S.Remiremont. However, did not have MBC for S.Charity. The result in parallel to that observed by Irena et al., (2009) who found that thyme had the highest antibacterial efficiency against tested food borne bacteria strains S. Enteritidis and E. coli. It could be concluded that Eucalyptus and Mint oils had antibacterial activity against E. coli and Salmonella species at lowest MIC in vivo.
and advice to evaluate the physiological effects of these oils in vivo.

5. REFERENCES

Abd El Tawab et al. (2015)

