Phenotypic and genotypic characterization of Campylobacter isolated from poultry

Wedad Ahmed1,2, Helmut Hotzel1, Ashraf A. Abd El-Tawab2, Fatma I. El Hoya2, Mona M. Sobhy3

1 Friedrich-Loeffler-Institute, Institute of Bacterial Infections and Zoonoses, Naumburger Str. 96a, 07743 Jena, Germany
2 Department of Microbiology, Faculty of Veterinary Medicine, Benha University, PO Box 13736, Moshtohor Toukh, Egypt
3 Department of Reproductive Diseases, ARRI, ARC, 12556 Giza, Egypt

ABSTRACT

Campylobacteriosis incidence and proportion of Campylobacter strains resistant to antibiotic have been increased worldwide in the last decades. Campylobacteriosis is considered as one of the major important zoonotic gastrointestinal diseases around the world. The aim of this study was isolation and biochemical characterization of Campylobacter from poultry. Campylobacter isolation have been done on MCCDA media, motility has been detected by phase contrast microscope, morphology has been detected by Gram stain, and confirmed by MALDI-TOF MS and molecular confirmation by using cPCR. The total of 102 isolates of Campylobacter were isolated from farm and small backyards located in different sources in El-Kalyobia, El-Monofia and El-sharkia Governorates by conventional bacteriological methods from which 40 were C. jejuni and 62 were C. coli. All isolates have been confirmed as Campylobacter by MALDI-TOF MS and detection of 16S rRNA by cPCR. PCR is a useful molecular tool for identification and confirmation of Campylobacter. It is rapid, sensitive, and specific than the culture methods, but the only disadvantage is that is expensive.

INTRODUCTION

One of the major important zoonotic gastrointestinal disease is Campylobacteriosis around the world, and Campylobacter jejuni (C. jejuni) is the most prevalent causative agent. Poultry has a significant role in transmission of Campylobacteriosis to human (Gormley et al., 2008). Thermophilic Campylobacter species have Gram negative cell wall structures with capsule and flagella. The bacteria are slender, curved rod to small spiral in shape with 0.2-0.5 mm width and 0.5-5.0 mm length (Shane and Harrington, 1998). C. jejuni is the major pathogen of food borne C. enteritis in human, followed by C. coli and then C. lari (Skirrow and Blaser, 2000). Campylobacteriosis incidence has been increasing worldwide during the last decades (Luangtongkum et al., 2009) leading to a rise of public health disease. The number of diseased persons and death rate were both expanded (Euro Surveill., 2015). Contaminated broilers represent the highest risk for consumers (Sahin et al., 2015). In comparison, layers have not got equivalent consideration, layers might be the main reservoirs for antimicrobial-resistant Campylobacter. This is critical because layer farming is a gigantic operation in Egypt. Thusly, these hens that carry antimicrobial resistant Campylobacter can pose a potential risk of environmental contamination and subsequent transmission through farm animals, wildlife and workers (Ahmed et al., 2013). Particularly, Campylobacter can stay in feces of layers and in poultry litter for a few days, which proposed that the land utilization of these byproducts as fertilizers might contribute to the scattering of the pathogens (Kassem et al., 2010; Ahmed et al., 2013). Campylobacter diagnosis is obstructed by the fastidious characteristics of these microorganisms, and it can become more difficult by appearance of a viable-non-cultivable state of these microorganisms (Jackson et al., 2009).

The purpose of the current study is to describe cultivation and identification of thermophilic Campylobacter from poultry by a combination of bacteriological and molecular methods.

MATERIAL AND METHODS

2.1. Samples:
The present study was conducted during the period of January 2016 to September 2019 on a total of 617 sample from 38 poultry farms and small backyards located in different sources in El-Kalyobia, El-Monofia and El-sharkia Governorates.

2.2. Isolation of Campylobacter species:
Loopfuls from each sample were cultured directly onto thioglycollate broth medium for 24-72 hours in sterile tubes, then a loopful from each tube was cultured on modified Campylobacter blood free selective medium with
antibiotics. All inoculated plates were incubated in anaerobic jar with kits which generates CO₂ (10%), O₂ (5%) and N₂ (85%) at 37 °C for 48 hours and were demonstrated daily for the characteristic colonies. Then purification of the suspected colonies on blood agar media with defibrinated sheep blood containing Campylobacter growth supplement for 24 hours.

2.3. Morphological identification of Campylobacter isolates:
Suspected growing colony on the specific agar plates were examined carefully for their morphological characters according to Koneman et al. (1995). A single suspected colony was stained with Gram’s stain to demonstrate the characteristics morphology of the isolates. Campylobacter species are Gram negative.

2.4. Motility:
Direct smear from 3 days old culture were examined under phase contrast microscope to demonstrate the corkscrew like motion characteristic to Campylobacter species (Smibert, 1974).

2.5. Biochemical identification:
The purified colonies were identified biochemically by catalase production test. A small amount of pure growth were placed onto the surface of a clean, dry glass slide by sterile loop then a drop of 3% hydrogen peroxide was added into a portion of colony on the slide (Laing, 1960), production of bubbles of gas, indicating the production of catalase enzyme. Oxidase activity was examined with 1% aqueous solution on filter paper of tetramethyl-p-phenyl-diamine-di-hydrochloride as a reagent. With a wooden loop a separate well grown colony will be picked up from a fresh culture medium (24 hours) and applied to the reaction on the filter paper (El-Gohary, 1998). A positive reaction was indicated by a violet coloration within 20-60 seconds at the contact point.

2.6. Identification by MALDI-TOF MS:
Identification of isolates by using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) (Bizzini et al., 2010). After centrifugation for 5 min at 10,000 x g, the supernatant was removed and the pellet was re-suspended in 50 μl of 70% (vol/vol) formic acid (Sigma-Aldrich Chemie GmbH, Steinheim, Germany). Fifty microliters of acetonitrile (Carl Roth GmbH) were added, mixed and centrifuged. One and a half microliter of the supernatant was transferred onto MTP 384 Target Plate Polished Steel TF (Bruker Daltonik GmbH, Bremen, Germany). After air-drying the material was overlaid with 2 μl of a saturated solution of α-cyano-4-hydroxycinnamic acid (Sigma-Aldrich Chemie GmbH). After air-drying spectra were acquired with an Ultraflex (Bruker Daltonik GmbH).

Analysis was carried out with the Biotyper 3.1 software (Bruker Daltonik GmbH). Interpretation of results was performed according to the manufacturer’s recommendation: score of ≥2.3 represented reliable species level identification; score 2.0–2.29, probable species level identification; score 1.7–1.9, probable genus level identification, and score ≤1.7 was considered an unreliable identification (Lüthje et al., 2017).

2.7. Molecular confirmation of Campylobacter isolates:
Genomic bacterial DNA was prepared from colonies with typical growth and subculture on blood agar. The samples were processed according to the manufacturer instructions by using the High Pure PCR Template Purification Kit (Roche Diagnostics, Mannheim, Germany). PCR amplifications were carried out targeting 16S rRNA gene (S1: ATC TAA TGG CTT AAC CAT TAA AC, S2: GGA CGG TAA CTA GTT TAG TAT) as described by Denis et al. (2001). Gel electrophoresis used for analysis of PCR products on 2% agarose gels following staining with ethidium bromide and visualized under ultraviolet light.

3. RESULTS

Identification of thermophilic Campylobacter
A total of 102 Campylobacter species were identified from different poultry species by bacteriological examination by their characteristic colony on mCCDA and oxidase production as thermophilic Campylobacter produced intense deep purple color appearance within few seconds on oxidase strip, by gram stain it was appeared as gram negative twisted bacilli and Campylobacter showed there characteristic cork screw motility when examined by phase contrast microscope, MALDI-TOF revealed the same result.

Table 1 Occurrence of Campylobacter jejuni and coli in poultry samples

<table>
<thead>
<tr>
<th>Poultry species</th>
<th>No.</th>
<th>Broiler</th>
<th>Turkeys</th>
<th>Ducks</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>No.</td>
<td>%</td>
<td>No.</td>
<td>%</td>
<td>No.</td>
<td>%</td>
</tr>
<tr>
<td>Layers</td>
<td>24</td>
<td>12</td>
<td>13.1</td>
<td>10</td>
<td>31.2</td>
</tr>
<tr>
<td>Broiler</td>
<td>21</td>
<td>36</td>
<td>16.9</td>
<td>16</td>
<td>44.4</td>
</tr>
<tr>
<td>Turkeys</td>
<td>32</td>
<td>9</td>
<td>28.1</td>
<td>2</td>
<td>22.2</td>
</tr>
<tr>
<td>Ducks</td>
<td>12</td>
<td>25</td>
<td>19.5</td>
<td>12</td>
<td>48.0</td>
</tr>
<tr>
<td>Total</td>
<td>87</td>
<td>102</td>
<td>16.5</td>
<td>40</td>
<td>39.2</td>
</tr>
</tbody>
</table>

no.: number of samples. Broiler: Broiler chicken.

Confirmation of campylobacter isolates by conventional PCR:
Accurately, 102 Campylobacter isolates were confirmed by amplification of 16S rRNA gene at size of 857 bp using cPCR (Figure 1).

Fig 1 Typical amplification of 16S rRNA gene. Lane L: 100-1000 bp DNA Ladder. C+: Positive control. Samples from 1 to 12: Campylobacter (positive) at 850 bp.

4. DISCUSSION

In the last ten years, the occurrence of Campylobacteriosis were in an increasing trend. As C. jejuni able to colonize poultry intestine that lead to poultry meat a reservoir of foodborne Campylobacteriosis (Ayaz et al., 2016). The main route of transmission of infection is eating of food of animal
origin and particularly poultry meat (Butzler and Oosterom, 1991).

Differentiation of C. jejuni and C. coli traditionally relied on the hipurate hydrolysis test; C. jejuni hydrolyses hippurate whereas C. coli does not. Polymerase chain reaction has become a reliable alternative to the traditional biochemical method of detection. PCR can identify bacteria at the gene level and this assay has been used for the detection of Campylobacter in poultry (Giesendorf et al., 1992; Hazeleger et al., 1994). Isolation and identification of Campylobacter spp. have traditionally involved the use of selective culture media combined with biochemical tests. This method is expensive, laborious and time consuming, whereas PCR is cheaper and nearly 4 times faster than SCM. In recent years, PCR has increasingly been applied in detection and identification of Campylobacter spp. Several reports used PCR method have shown great improvement in accuracy and sensitivity, associated with fast sample processing (Englen and Fedorka-Cray, 2002; Wang et al., 2002).

In the current study, Campylobacter spp. were isolated from 16.5% cloacal swabs from all poultry species, near results. The obtained results revealed 25/128 (19.5%) and 139/712 (19.5%) this nearly like the values reported by other authors (2008) (33.7%), Little et al. (2008) (33.7%), cook et al. (2009) (46%), Moran et al. (2009) (56%) and Perko-Makela et al. (2009) (31.4%). The recorded data showed that Campylobacter species which isolated from chicken samples (broilers & layer chicken) revealed that Campylobacter spp. were 32/244 (13.1%) from broilers and 36/213 (16.9%) from broiler. This result in agreement with Hofshagen and Kruse (2005) (4.8%), Stern et al. (2005) (17.6%-12.7%) and Bai et al. (2014) (26.3%).

According to turkeys, the prevalence of Campylobacter was (28.1%) this nearly like the values reported by other authors Logue et al. (2003) (34.9%), whyte et al. (2004) (37.5%), Arsenault et al. (2007) (46%), Little et al. (2008) (33.7%), cook et al. (2009) (46%), Moran et al. (2009) (56%) and Perko-Makela et al. (2009) (31.4%). The obtained results revealed 25/128 (19.5%) Campylobacter species in ducks which was like results obtained from ducks in Thailand Boonmar et al. (2007) (20%) and Hamed et al. (2014) (24%). While Campylobacter in this study was lower than whyte et al. (2004) (45.8%), Tsai and Hsing (2005) (43.5%) and Rahimi et al. (2011) (35.5%) and higher than Nor et al. (2013) (12%).

The high prevalence of Campylobacter in poultry in our study explained by the reason that poultry is exposed to campylobacters at farm due to low level of biosecurity and hygiene measures, and thus lead to contamination of carcasses during different slaughtering processes and so transmission of infection to human.

5. REFERENCES


