Detection of virulence factors of Mycoplasma species isolated from chicken by multiplex PCR

Ashraf A. Abd-El-Tawab1, Wafaa M. M. Hassan2, Mohammed S. El-ordy3

1 Bacteriology, Immunology and Mycology Department, Faculty of Veterinary Medicine, Benha University, Egypt.
2 National Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Dokki-Giza, Egypt.
3 Veterinarian

ARTICLE INFO
Keywords
- Broiler chickens
- Mycoplasma gallisepticum
- Mycoplasma synoviae
- PCR
- Sensitivity test.

ABSTRACT
One hundred and sixty clinically diseased broiler local chickens collected from 22 different farms belonging to Qalyubia, Dakahlia and Gharbia governorates were subjected to bacteriological examination and molecular characterization. Clinical signs were chronic respiratory disease with respiratory manifestations, lameness, loss or reduction in egg production. Bacteriological examination showed that 18.18% of the isolates were Mycoplasma positive and showed growth in pleuropneumonia-like organism (PPLO) agar plates, with fried egg appearance when examined by stereoscopic microscope. Mycoplasma colonies were tested for antimicrobial sensitivity tests against 12 antimicrobial antibiotics showed higher sensitivity to nitrofurantoin, gentamicin, norfloxacin, ciprofloxacin and neomycin. Intermediate sensitivity were recorded to ceftriaxone and cefotaxime, and antibiotic resistance was recorded to tetracyclines, lincomycin, chloramphenicol and sulphamethoxasine. Identification of the bacterial strains of the isolates was conducted by multiplex PCR using two primer pairs for Mycoplasma synoviae (v lhA) and Mycoplasma gallisepticum (mgc2). The amplicons expected sizes were 396 bp, and 300 bp for v lhA and mgc2, respectively. Only 13 out of 22 farms were positive, representing 59.09%. Moreover, the incidence rate of M. synoviae (v lhA) and M. gallisepticum (mgc2) was 22.72% and 13.63%, respectively, and 22.72% of the inspected farms showed positive results for both Mycoplasma strains. In conclusion, high prevalence of mixed M. synoviae and M. gallisepticum infections in poultry cause respiratory manifestations. Multiplex PCR is sensitive and specific for simultaneous detection of M. synoviae and M. gallisepticum in a single reaction.

1. INTRODUCTION

Mycoplasma is a member of Mollicutes class. Mycoplasma is recognized as the most important pathogen in poultry associated with high mortality rates, increase in carcass condemnations and drop in egg production (Levisohn and Kleven, 2000). Moreover, transient suppression of humoral and cellular immune responses, immune tolerance and auto immune diseases, as well as the massive lymphoid cell infiltration in the respiratory tract and joint tissues of infected fowls were occurred during mycoplasma infection (Yamamoto et al., 1990; Razin et al., 1998). Mycoplasmas infection is induced after the host is exposed to stress factors like vaccination, cold weather, overcrowding, feed/water restriction, temperature extremes, poor ventilation and other stress. Mycoplasma infection is usually associated with respiratory manifestations, high mortalities, reduced weight gain and condemnation of birds at the slaughter.

Mycoplasma gallisepticum strain was first isolated by Yoder (1980), while M. synoviae was first isolated from synovial sheath of commercial chickens by Morrow et al. (1990).

The most important Mycoplasma pathogens of the poultry are Mycoplasmagallisepticum, Mycoplasma synoviae, Mycoplasma meleagris (only for turkeys) and Mycoplasma iowae. All of them cause significant economic losses (Kleven, 1997; Ley, 1997; Yoder, 1991). Mycoplasmas are thought to colonize in mucosal surfaces more efficiently and become more virulent by alternating the composition of their surface proteins. Mycoplasma gallisepticum cytadhesin membrane surface proteins that undergo changes are represented by pmgAS (hemagglutinins), mgc1, mgc2 and pvpA (Bencina et al. 2002). Mycoplasma Synoviae has two major surface antigens; Hat are encoded by a single gene, v lhA (variably expressed lipoprotein (MSPB) and the haemagglutinin (MSPA)) (Kisocik et al., 2010). Recent comparison of the M. gallisepticum genome with the M. synoviae genome revealed that a number of their genes have been transferred horizontally (Papazisi et al., 2003).

Although antimicrobials are considered very important method for treatment of clinical disease and maintaining birds’ health and productivity, they have been implicated as risk factors in the dissemination and development of drug resistance (Whithear et al. 1983). M. gallisepticum may
develop resistance and even demonstrate cross-resistance to commonly used antibiotics (Zanella et al., 1998). Moreover, *Mycoplasma* revealed sensitivity to tetracyclines and quinolones, but they are resistant to penicillin and other antibiotic inhibitors of cell wall synthesis (Bébéar et al. 1999).

The aim of the present study was to evaluate a multiplex PCR assay for rapid detection of *Mycoplasma* pathogens in clinical specimens of chicken suffered from respiratory manifestations and loss of egg production thus would allow earlier and appropriate treatment as well as control of the diseases.

2. MATERIAL AND METHODS

2.1. Chicken samples:

A total of 160 chicken samples were collected aseptically from heart, liver, trachea and synovial fluids from 22 different farms suspected to be infected with *Mycoplasma* and belonging to Qalyubia, Dakahlia and Gharbia governorates.

2.2. Bacteriological examination:

Pleuropneumonia-like organism (PPLO) plus DNA media (PPLO broth or PPLO agar, Horse serum, Yeast extract 5% solution, DNA 0.2% w/v solution, Penicillin G-Sodium and Thallium acetate 2% w/v solution) was used for bacteriological examination according to Sabry (1968).

2.3 Microscopical examination:

By using Geimsa staining technique as described by Sabry (1968) for morphological study.

2.4. Biochemical identification of the bacterial isolates:

It was performed according to Sabry (1968) including Glucose fermentation medium (Phenol red dextrose broth base, Horse serum, Thallium acetate 2% w/v solution and Penicillin G-Sodium) and Arginine deamination medium (Phenol red broth base, L-arginine solution (10% w/v solution), Horse serum, Thallium acetate 2% w/v solution and Penicillin G-Sodium).

2.5. Antimicrobial sensitivity test:

The disk diffusion method was applied according to Bauer et al. (1966). All *mycoplasma* isolates were tested for their antimicrobial susceptibility by 12 different antimicrobial agents (DiFco™) including; neomycin (30 μg), nalidixic acid (30 μg), nitrofurantoin (300 μg), tetracycline (30 μg), ciprofloxacin (30 μg), gentamicin (10 μg), oxytetracycline (30 μg), ceftriaxone (30 μg), lincomycin (μg), norfloxacin (10 μg), cefotaxime (30 μg), sulphamethoxasine (100 μg), chloramphenicol (30 μg). The interpretation of inhibition zones of tested culture was done according to NCCLS, (2002), when the zone of inhibition had a diameter ≥ 20mm, the isolate was considered sensitive to the used antibiotic.

2.6. Detection of virulence genes PCR method:

DNA extraction was performed using QIAamp DNA mini extraction kit according to the manufacturer’s instruction. DNA was amplified by using the PCR method (Lysynansky et al., 2005). PCR Master Mix used for cPCR is Emerald Amp GT PCR mastermix (Takara) Code: No. RR310A contains Emerald Amp GT PCR mastermix (2x premix) and PCR grade water. Temperature and time conditions of the two primers during PCR are shown in (table 1) according to specific authors and Emerald Amp GT PCR mastermix (Takara) kit.

3. RESULTS

3.1. Incidence of Mycoplasma in the examined chicken farms by using conventional culture method:

Out of 160 samples taken from diseased broiler chickens from 22 different broiler farms from Qalyubia, Dakahlia and Gharbia Governorates, 4 farms showed *mycoplasma* positive, with an incidence rate of 18.18%. Isolates appeared as fried egg when examined by microscopic microscope, sensitive to digitonin, positive to glucose fermentation test and negative for arginine deamination test.

3.2. Antimicrobial sensitivity testing of Mycoplasma isolated from broiler chickens:

Results of *in-vitro* antimicrobial sensitivity testing for *Mycoplasma* isolates were demonstrated in table (3). *Mycoplasma* isolates were highly resistant to tetracyclines. Moderate sensitivity was observed against ceftriaxone and ciprofloxacin, and highly sensitive to gentamicin and nitrofurantoin.

3.3. Incidence of Mycoplasma species in different poultry farms by using multiplex PCR were demonstrated in table (4).

3.4. Comparison between percentage of detection of mycoplasma from clinical samples using conventional culture methods and PCR in different governorates were demonstrated in (table 5).

<table>
<thead>
<tr>
<th>Antibacterial agents</th>
<th>Disc content(µg)</th>
<th>Susceptible</th>
<th>Resistant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neomycin</td>
<td>3</td>
<td>75</td>
<td>1</td>
</tr>
<tr>
<td>Ceftriaxone</td>
<td>30</td>
<td>50</td>
<td>2</td>
</tr>
<tr>
<td>Nalidixic acid</td>
<td>30</td>
<td>75</td>
<td>1</td>
</tr>
<tr>
<td>Ciprofloxacin</td>
<td>30</td>
<td>75</td>
<td>1</td>
</tr>
<tr>
<td>Tetracycline</td>
<td>30</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Gentamicin</td>
<td>10</td>
<td>75</td>
<td>1</td>
</tr>
<tr>
<td>Nitrofurantoin</td>
<td>30</td>
<td>75</td>
<td>1</td>
</tr>
<tr>
<td>Lincomycin</td>
<td>10</td>
<td>50</td>
<td>2</td>
</tr>
<tr>
<td>Chloramphenicol</td>
<td>30</td>
<td>50</td>
<td>2</td>
</tr>
<tr>
<td>Sulphamethoxasine</td>
<td>100</td>
<td>50</td>
<td>2</td>
</tr>
<tr>
<td>Norfloxacin</td>
<td>10</td>
<td>75</td>
<td>1</td>
</tr>
<tr>
<td>Cefotaxime</td>
<td>30</td>
<td>50</td>
<td>2</td>
</tr>
</tbody>
</table>

No.: Number of positive cases; % was calculated according to the total number of *mycoplasma* isolates (n=4).
culture identification 3.75% in comparison to molecular technique (42.4%). Moreover, Rault et al. (2013) used 16S rRNA gene as species specific primers of MG and found overall 27.6% from field birds were positive for MG by conventional cultivation methods in comparison to PCR (68.94%). These results are attributed to the fact that PCR can detect DNA from both viable and non-viable bacteria and hence is more reliable diagnostic test in terms of sensitivity and specificity. Thus, the use of reference genes differ from genes applied in the previous studies, the results are similar to our results and Mycoplasma showed different isolation results for MG and MS at the same sample.

In a previous study, Bousseta et al., (1997) isolated MG from 15 flocks (23.8%), while M.S was isolated from only five flocks (7.9%) in Tunisia. The prevalence of M.S in backyard chickens averaged between 68.6 % and 100%, while the prevalence of M.G was averaged between 32.8% and 55.1% (Xavier et al., 2011). But in our study, overall, 5 out of 22 examined farms were assigned to be positive for M. synoviae (22.72%) were with single infection, 3 (13.63%) associated with M. gallisepticum and 5 (22.72) showed mixed infections, meanwhile 9 farms only (40.9%) were negative.

Multiplex PCR assay was optimized for successful detection of genes with expected amplicon sizes from clinical specimens collected from suspected farms. The results showed that mPCR yielded a detectable DNA fragment of expected molecular weight only in the presence of their respective DNA template and gave negative results when tested with other bacteria.

Siddique et al. (2012) optimized the multiplex PCR for successful detection of five of the respiratory tract pathogens including M. gallisepticum, M. synoviae, Newcastle disease virus, Infectious bronchitis virus and Avian influenza virus. Bayatzadehet al. (2011) amplified the conserved region of 16S rRNA gene for the detection of Mycoplasma genus in 163bp fragment and M. synoviae in 165bp fragment. In the current work, two reference strains of Mycoplasma including M. synoviae (vlhA) and M. gallisepticum (mgc2) with expected amplicon sizes 396bp and 300bp respectively, which amplified using its respective primer pairs.

In general, the use of multiplex PCR reactions for groups of organisms causing similar syndromes provides an efficient way to ask several related epidemiological questions simultaneously. On the other hand, vaccination didn’t give complete protection against infection, but some were effective in suppress the multiplication of the organism, resulting in less tissue damage followed by faster recovery (Hildebrand et al., 1983; Rodriguez and Kleven, 1985).

Antibiotic treatment (chemotherapy) is necessary in complement of biosecurity to control Mycoplasma infections. It is logic that for a successful and aimed mycoplasma infection treatment, it is necessary to have regular antibiogram tests of Mycoplasma strains. The results were compared with those obtained using culture techniques. Obviously, the PCR assays have demonstrated a significantly higher rate of detection of Mycoplasma in poultry farms with various problems in Egypt than detection by classical culture procedures. Overall, PCR could detect Mycoplasma in 13 farms (59.09%). Also, Marois et al. (2002) recorded positive M. gallisepticum cases through.
5. CONCLUSION

M. synoviae consider as the most common poultry mycoplasma causes respiratory infections in poultry. Higher prevalence of mixed M. synoviae and M. gallisepticum infections in poultry with respiratory manifestations was recorded. Multiplex PCR is sensitive and specific for simultaneous detection of M. synoviae and M. gallisepticum in clinical specimens in a single reaction. Mycoplasma are highly sensitive to gentamicin and nitrofurantoin antibiotics, while they are highly resistant to tetracyclines.

6. REFERENCES

Abd-El-Tawab et al. (2019)