Bacteriological examination of some ready to eat meat and chicken meals

Fahim A. Shallout1, Hanan M. Lamada2, Ehsan A.M. Edris3

1 Food Hygiene and Control Dept., Faculty of Veterinary Medicine, Benha University, Egypt
2 Animal Health Research, Tanta branch, Egypt.
3 Tanta University Hospitals, Egypt

ARTICLE INFO

ABSTRACT

Sixty random samples of ready to eat chicken and meat meals including meat, chicken, beef kofta and chicken kofta (15 of each) were collected from different restaurants from Tanta city to evaluate their bacteriological quality. The mean values of Aerobic plate count (APC), Enterobacteriaceae, coliform counts (CFU/g) were 6.03×10^7 ± 1.45, 3.16×10^7 ± 0.72, 7.43×10^2 ± 1.05 for meat, 8.58×10^7 ± 1.65, 6.53×10^7 ± 1.24, 9.18×10^2 ± 2.07 for chicken, 9.91×10^7 ± 2.18, 5.25×10^7 ± 0.86, 1.06×10^7 ± 0.19 for beef kofta and 2.03×10^7 ± 0.43, 9.14×10^2 ± 2.06, 3.32×10^2 ± 0.45 for chicken kofta, respectively. The results showed that 12 isolates of Escherichia coli from the examined ready to eat chicken and meat meals with different percentages as follow: O25:H1, EHEC (6.67%) & O111:H1 EHEC (6.67%) for meat, O26:H1 EHEC (13.33%) & O126 EIEC (6.67%) for beef kofta, O9 EPEC (6.67%) & O127:H6 ETEC (6.67%) for chicken; O26:H1 EHEC (13.33%) & O111:H2 EHEC (6.67%) for chicken kofta. Also, there were 6 isolates of salmonella from the examined meals were identified. Also, there were 21 Staph. aureus from examined samples represented as 20% from meat, 40% from beef kofta, 33.33% from chicken and 46.67% from chicken kofta. Thus, the results in this study concluding that all examined samples were contaminated with different bacteria as Escherichia coli, salmonella and Staph. aureus, and the highest APC was in chicken kofta followed with beef kofta, chicken and meat.

1. INTRODUCTION

Ready to eat meat meals due to their high biological value, agreeable taste and easily serving. The meat meals have an excellent source of high-quality protein, vitamins and minerals (WHO, 1984; Mosupy et al., 1998). By using raw materials of poor microbial quality, bad personal hygiene and consumption at room temperature lead to contamination of food with pathogenic microorganisms, especially Salmonella and coliforms, causing potential risk to public health (Kiiplili et al., 2003). Improper practices responsible for microbial food borne illness have been reported (Egan et al., 2007) and typically involve cross contamination of raw and cooked food, poor cooking and storage at inappropriate temperature. Staphylococcal food poisoning has rapid onset and its symptoms include nausea and violent vomiting with or without diarrhea (Argudin et al., 2010). Salmonella species can persist on final raw products. Disease can result when these products are handled without good hygienic practices, not properly cooked and/or subjected to temperature abuse (Zhang et al., 2001). It is considered that the presence of Salmonella species in products makes it unsafe for human consumption (Agunos, 2007; Muth, 2009). Escherichia coli is an important organism involved in food borne disease, it is considered as a good indicator of possible fecal contamination (Syng, 2000).

Therefore, the present study was planned out for determination of APC, Enterobacteriaceae and coliforms counts, isolation and identification of E. coli, salmonella and Staph. aureus for ready to eat meat and chicken meals including meat, chicken, beef kofta and chicken kofta.

2. MATERIAL AND METHODS

2.1. Collection of samples

Sixty random samples of ready to eat chicken and meat meals including meat, chicken, beef kofta and chicken kofta (15 of each) were collected from different restaurants. Each sample was kept in a separate sterile plastic bag, put in an ice box then transferred to the laboratory under complete aseptic conditions without any delay for bacteriological examination.

2.2. Preparation of samples (ICMSF, 1996):

Samples were prepared by adding 25 grams of the sample to 225 ml of sterile peptone water then thoroughly mixed sterile blender for 2.5 minutes, from which tenth fold serial dilution was prepared. The prepared samples were subjected to the following bacteriological investigations:

2.2.1. Determination of aerobic plate count (ICMSF, 1996).

2.2.2. Determination of total Enterobacteriaceae count (Grok, 1976) by using Violet Red Bile Glucose agar.
2.2.3. Determination of total coliform count (ICMSF, 1996) by using Violet Red Bile agar medium.
2.2.4. Isolation and identification of Enteropathogenic E. coli (ISO, 2001):
The isolation was applied by using MacConkey broth as enriched broth and Eosin Methylene blue (EMB) as plating media, then the isolated strains of E. coli were identified serologically by using rapid diagnostic E. coli antisera sets (DENKA SEIKEN Co., Japan) for diagnosis of the pathogenic types according to Kok et al. (1996).
2.2.5. Isolation and identification of salmonellae (ISO, 2002).
2.2.6. Isolation and identification of S. aureus (ICMSF, 1996).

3. RESULTS

The results of bacteriological examination of some ready to eat chicken and meat meals samples revealed that APC and coliform were highest in chicken kofta followed by beef kofta then chicken then meat. While, Enterobacteriaceae was highest in chicken kofta followed by chicken then beef kofta then meat (Table 1).

Isolation and identification of E. coli in the examined samples revealed that the incidence of E.coli was 26.67% in chicken, 20% in both of beef kofta and 13.33% in meat, 12 isolates of E. coli represented as 13.33% from meat with serotypes O:26:H1 (6.67%) and O:11:H1a (6.67) 20% from beef kofta with serotypes O:26:H1 (13.33%) and O:11:H1a (6.67%), 20% from chicken with serotypes O:26:H1 (6.67%), O:11:H1a (6.67%) and O:26:H11 (6.67%), 26.67% from chicken kofta with serotypes O:26:H1 (13.33%), O:3:H12 (6.67%) and O:11:H12 (6.67%) (Tables 5 & 6).

4. DISCUSSION

The total aerobic plate count is very important for evaluation of sanitary condition of ready to eat meat meals. Limits suggested for total aerobic bacterial count in various foods range from 10^2 to 10^5 microbes/g (EEC, 2005).

It is evident from the results recorded in Table (1) that the APC/g of the examined samples of ready to eat chicken and meat meals ranged from 2.1×10^3 to 1.7×10^4 with an average of 6.03×10^3 ± 1.45×10^3 cfu/g for meat, 4.6×10^3 to 2.9×10^4 with an average 9.91×10^2 ± 2.18×10^2 cfu/g for meat kofta, 3.5×10^3 to 3.9×10^4 with an average 8.58×10^2 ± 1.65×10^2 cfu/g for chicken and 6.0×10^3 to 7.7×10^4 with an average 2.03×10^4 ± 0.43×10^2 cfu/g for chicken kofta. The current results nearly similar to the results recorded by (Sobieh, 2014) found that the mean value of RTE kofta was 1.83×10^3 cfu/gm, while higher results was recorded by Shaltout et al. (2015a) who found that the mean value of APC of RTE kofa was 8.51×10^3 cfu/g, also higher results was recorded by Shaltout et al. (2015b) found that the mean APC of RTE chicken meals was 1.9×10^4 cfu/g and in RTE meat meals was 1.2×10^4 cfu/g. High incidence of APC may indicate that the cooking process was inadequate, or post cooking contamination had occurred, or the length of time and temperature control in storage or display facilities was inadequate to prevent bacterial contamination or that a combination of these factors was involved (Khater et al., 2013).

Results given in Table (2) revealed that the acceptability of the examined samples of cooked meat and chicken meals based on their APC was (86.67%) of meat samples were accepted but (26.67%) of beef kofta samples were accepted (13.33%) of meat samples were unaccepted (73.33%) of beef kofta samples were accepted but (20%) of chicken samples were unaccepted and (60%) of chicken kofta were accepted but (40%) of chicken kofta were unaccepted. Results achieved in Table (3) showed that the mean values of total Enterobacteriaceae counts/g in the examined samples of Ready to eat chicken and meat meals were 3.16×10^3 ± 0.72×10^3 cfu/g for meat, 5.25×10^3 ± 0.86×10^3 cfu/g for meat kofta, 6.53×10^3 ± 1.24×10^3 cfu/g for chicken and 9.14×10^3 ± 2.06×10^3 cfu/g for chicken kofta. The current results was nearly similar to recorded by Shaltout et al. (2015a), who found that the mean values of enterobacteriaceae of RTE kofa was 7.15×10^3 cfu/g, while higher results recorded by Shaltout et al. (2013), who found the mean value of enterobacteriaceae of street vended kofa samples was 1.5×10^4 cfu/g. From the results in Table (4), it is obvious that the mean values of total coliform counts cfu/g in the examined samples of ready to eat chicken and meat meals were 7.43×10^2 ± 1.08×10^2 cfu/g for meat, 1.06×10^3 ±
0.19×10^3 (cfu/g) for meat kofta, 9.18×10^2 ± 2.07×10^1 cfu/g for chicken and 3.32×10^3 ± 0.45×10^2 cfu/g for chicken kofta. The current results was nearly similar to the results recorded by (Saad et al., 2011) who found that the mean values of coliform was 5.17×10^2 ± 1.2×10^2 cfu/g, while higher results was recorded by Hussen (1996), who found the mean value of coliform count of kofta sandwiches was 1.8×10^3 cfu/g.

The results in Tables (5&6) showed that there are 12 isolates of E. coli represented as 13.33% from meat with serotypes O26:H11 (6.67%) and O141:H1 (6.67%) 20% from beef kofta with serotypes O26:H11 (13.33%) and O141 (6.67%). 20% from chicken with serotypes O3 (6.67%), O127:H6 (6.67%) and O145:H2 (6.67%). 26.67% from chicken kofta with serotypes O26:H11 (13.33%), O141:H1 (6.67%) and O127:H6 (6.67%).

Table (7&8) showed the incidence and serotyping of salmonella isolated from ready to eat meat and chicken meals is 6.67% from meat identified serologically as S. heidelberg O5:15:H11:12 6.67% from beef kofta identified serologically as S. kentucky O20H:26 20% from chicken kofta identified serologically as S. anatum O19:12: H24:1:7:2 6.67% from chicken identified serologically as S. kentucky O20:H:26 from chicken kofta identified serologically as S. anatum O19:12: H24:1:7 (6.67%), S. infantis O6:7,14:H1,2,3 (6.67%) and S. typhimurium O1:5:12: H11:2 (6.67%). Salmonella microorganisms were previously isolated from ready to eat meat meals by (Soliman et al., 2002) and Richardson and Stevens (2003). Also, salmonella failed to be isolated from ready to eat meat meals by Kirralla (2007). The symptoms of salmonellosis include diarrhea, nausea, vomiting, fever and abdominal cramps (Cui, 2004).

The results in Table (9) reported that Staph. aureus was isolated from 20% of meat, 40% of meat kofta, 33.33% of chicken and 46.67% of chicken kofta. Such organism was isolated previously from ready to eat meat meals by (Soliman et al., 2002; Kirralla, 2007), who isolated Staph. aureus from cooked samples. The presence of Staph. aureus in ready to eat meat meals may be due to their contamination from food handlers, inadequate cleaned equipment or post processing contamination (Duffy et al., 2000).

Table 4 Analytical results of coliform counts/g in the examined samples of ready to eat meat and chicken meals (n=15)

<table>
<thead>
<tr>
<th>Sample Type</th>
<th>Positive samples %</th>
<th>Min</th>
<th>Max</th>
<th>Mean ± S.E</th>
</tr>
</thead>
<tbody>
<tr>
<td>Meat meals</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>46.67</td>
<td>1.0x10^2</td>
<td>2.3x10^2</td>
<td>7.43x10^3 ± 1.05x10^3</td>
</tr>
<tr>
<td>Kohta</td>
<td>8</td>
<td>53.33</td>
<td>1.0x10^2</td>
<td>4.9x10^2</td>
</tr>
<tr>
<td>Chicken meat meals</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chicken</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>53.33</td>
<td>1.0x10^2</td>
<td>3.7x10^2</td>
<td>9.18x10^3 ± 2.07x10^3</td>
</tr>
<tr>
<td>Kohta</td>
<td>9</td>
<td>60</td>
<td>1.0x10^2</td>
<td>7.0x10^3</td>
</tr>
</tbody>
</table>

Table 5 Incidence and serotyping of Enteropathogenic E. coli isolated from the examined samples of ready to eat meat meals (n=15).

<table>
<thead>
<tr>
<th>Antigens</th>
<th>Serotypes</th>
<th>Group</th>
<th>Strain Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>O15:12:</td>
<td>H5:2:4:1</td>
<td>EHEC</td>
<td></td>
</tr>
<tr>
<td>O26:O11:</td>
<td>H11:2:1</td>
<td>EHEC</td>
<td></td>
</tr>
<tr>
<td>O127:O1</td>
<td>H6:2:1V</td>
<td>EHEC</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>2</td>
<td>13.33%</td>
<td></td>
</tr>
</tbody>
</table>

5. REFERENCES

