Biocontrol of food contamination

Abo Bakr M. Edris¹, Ekbal A. Ebraheem¹, Ahmed M. Elsheewy²

¹Food Hygiene and Control Department, Faculty of Veterinary Medicine, Benha University
²Food Quality Control Program (FQCP), Faculty of Veterinary Medicine, Benha University, Egypt.

ABSTRACT

It is important to understand what the potential hazards that come to food safety. Food contamination refers to food that has been corrupted by another substance – either physical, biological or chemical. Biological contamination refers to food that is contaminated by organisms or substances they produce. This includes biological matter produced by humans, rodents, insects and microorganisms. Bacteria and viruses are typically the two biggest causes of biological contamination and can result in the most common types of food poisoning including salmonella, E. coli, listeria and Norovirus. Thoroughly washing your hands and sanitizing the food handling equipment are two of the best ways for prevention of bacterial contamination. Physical contamination occurs when a foreign object contaminates food. This can happen at any stage of the production process and could include glass, steel wool or pieces of plastic. Chemical contamination refers to food that has been contaminated with a natural or artificial chemical substance. These contaminants are particularly dangerous as they expose people to any number of toxic substances, some of which could be fatal.

1. INTRODUCTION

Food safety is one of the major concerns due to threatening human health by various food-borne pathogens. Food preservatives can be intimidating and have long, complex chemical names on food labels. Some preservatives have been accused of causing cancer. Surprisingly, most preservatives are naturally found in healthy food like fruits and vegetables. It is safer to eat preservatives than risk eating foods infected by bacteria and fungi.

Preservatives help fruit, vegetables and meat stay colorful and appetizing. The flavors of some foods are even enhanced from preservatives. They also prevent infections from bacteria, fungi and some viruses (Howe et al., 2015).

Bio-preservation could be defined as compounds, from natural sources or formed in food, able to prevent or retard spoilage related with chemical or biological deterioration that prolong product shelf life. According to this approach bio-preservation could have been used since ancient times, when fermentation emerged.

Bio-preservation is by using natural or controlled microbiota or antimicrobials. The fermentation products as well as beneficial bacteria are generally selected in this process to control spoilage and render pathogen inactive (Nikfar et al., 2009).

The Food and Drug Administration is in charge of testing and monitoring preservatives to make sure that they will not damage your body. Not only are preservatives regulated in human food, they are monitored in animal food as well. The majority of preservatives have been proven safe for consumption before they get to your plate.

Ascorbic acid can act as an antioxidant for food by preventing browning and discoloration. It is commonly used in fruits, according to an article from Utah State University (Ubeda et al., 2011).

While their names are incredibly similar, sodium nitrate and nitrite serve different purposes. Sodium nitrite is commonly found in cured meats, such as bacon. It is often used in deli meats to preserve the color of the meat. Beyond aesthetic purposes, sodium nitrite can actually keep you safe from a nasty bacteria called C. botulinum, which causes botulism (Ubeda et al., 2011).

Benzoic acid is naturally occurring in plants. There is a particularly high concentration in some berries. It is also found in some animals and their milk.

Benzoic acid is used as a preservative in some drinks, baked goods and condiments. It is also used in some toothpaste and mouthwash products, although the taste can be off-putting in high doses.

Sodium benzoate is more water soluble than benzoic acid, making it the preferred preservative for beverages like soft drinks. It is also used in pickle and fruit juice. It acts as a microbial to kill germs and retain the flavor of food (Ubeda et al., 2011).

2. SCIENTIFIC BACKGROUND

2.1. Sources of food contamination.

Food products are rich in nutrients required by microorganisms and may become contaminated. Major contamination sources are water, air, dust, equipment, sewage, insects, rodents, and employees.

Contamination of raw materials can also occur from the soil, sewage, live animals, external surface, and the internal organs of meat animals (Gaur et al., 2007).

* Corresponding author: Prof. Abo Bakr M. Edris, Food Hygiene and Control Department, Faculty of Veterinary Medicine, Benha University
Additional contamination of animal foods originates from diseased animals, although advances in health care have nearly eliminated this source. (Rodríguez-Hernández et al., 1997).

Contamination from chemical sources can occur through accidental mixing of chemical supplies with foods. Ingredients can contribute to additional microbial or chemical contamination. Contamination can be reduced through effective housekeeping and sanitation, protection of food during storage, proper disposal of garbage and litter, and protection against contact with toxic substances (Viktor et al., 2004).

2.2 Types or forms of food contamination.

There are three different types of food contamination - chemical, physical and biological, (Boa et al., 2004).

All foods are at risk of becoming contaminated, which increases the chance of the food making someone sick. Chemical contamination refers to food that has been contaminated by some type of chemical substance. Because chemicals can be very useful when cleaning in the kitchen, they can easily contaminate food. Chemicals must be properly labelled and stored separately for foodstuff to minimize the risk of contamination (Abdel-Shafy et al., 2015).

There are also chemicals that occur naturally in foods, like toxins in some fish, and in some cases, minimal chemical contamination might not actually lead to illness. However, the food handler must always be aware of the presence of chemicals in food and take all reasonable precautions to make sure that chemical contamination does not happen.

Biological contamination refers to food contaminated by substances produced by living creatures such as humans, rodents, pests or microorganisms. This includes bacterial, viral or parasitic contamination that is transferred through saliva, pest droppings, blood or faecal matter. Bacterial contamination is thought to be the most common cause of food poisoning worldwide, and the best way to protect against it occurring is by maintaining the best food safety practices (Callejón et al., 2015).

Physical contamination refers to food that contaminated by a foreign object at some stage of the production process. These objects have the ability to injure someone and can also potentially carry harmful biological contaminants, which then cause illness. An additional consequence of physical contamination is the upset caused to the person who finds the object. (Louis et al., 2016).

2.2.1 Chemical contamination.

The phrase chemical contamination is a clear indication of the presence of chemicals where they should not be or are present in an amount that is in a higher concentration than the amount that is attributed as safe. The chemical hazards are the main causes of food contamination that associated with foodborne disease outbreaks (Faille et al., 2013).

Furthermore, food contamination has become more serious in recent years due to the development of industry and the consequent environmental pollution (Song et al., 2017).

Besides that, the ingestion of contaminated food with pesticides and heavy metals could cause gastrointestinal infections (Song et al., 2017). For instance, an estimated 400 to 500 children died of acute lead poisoning due to ingestion of food contaminated with lead-contained soil and dust in Nigeria (Tirima et al., 2013).

2.2.2 Physical contamination.

Physical contamination occurs when a physical object enters food at some stage of the production or preparation process. Physical objects in food can be a choking hazard and often introduce biological contaminants as well. Even if the object is not likely to injure customer, finding an object in their food can be very distressing for a customer (Song et al., 2017).

2.2.3. Biological (Microbial) contamination

Biological contamination occurs when food becomes contaminated by living organisms or the substances they produce. This includes biological matter produced by humans, rodents, insects and microorganisms. Biological contamination is the leading cause of food-borne illness and food poisoning, and a common cause of food spoilage and food waste. There are six types of microorganisms that can cause food-borne illness: bacteria, viruses, parasites, protozoa, fungi and prions (Callejón et al., 2015).

Most food-borne illnesses are caused by the most common beings:
- Norovirus
- Listeria
- Salmonella
- Campylobacter

2.3 Biocontrol (Biopreservation).

For the Environmental definition of biocontrol is ‘Using biological means such as parasite viruses or predators to control a pest’ (Pee., 2010).

2.3.1 Prebiotics.

In 2008, the 6th Meeting of the International Scientific Association of Probiotics and Prebiotics (ISAPP) defined “dietary prebiotics” as “a selectively fermented ingredient that results in specific changes in the composition and/or activity of the gastrointestinal microbiota, thus conferring benefit(s) upon host health (Gibson et al., 2008). The following criteria are used to classify a compound as a prebiotic: (i) it should be resistant to acidic pH of stomach, cannot be hydrolyzed by mammalian enzymes, and also should not be absorbed in the gastrointestinal tract, (ii) it can be fermented by intestinal microbiota, and (iii) the growth and/or activity of the intestinal bacteria can be selectively stimulated by this compound and this process improves host’s health. (Gibson et al., 2008).

There are many types of prebiotics such as Fructans, Galacto-Oligosaccharides, Starch and Glucose-Derived Oligosaccharides, Non-Carbohydrate Oligosaccharides. The majority of them are a subset of carbohydrate groups and are mostly oligosaccharide carbohydrates (OSCs), but there are also some pieces of evidence proving that prebiotics are not only carbohydrates. (Louis et al., 2016).

Prebiotics may have similar safety concerns. The major safety issue of probiotics includes the risk of bacteremia, sepsis or endocarditis, especially in patients with prominent immuno-deficiency (e.g., HIV, cancer, transplant), severe malnutrition or incompetent intestinal epithelial barrier (e.g., severe diarrhea, NEC) (Tsai et al., 2019).

It is noteworthy that, these potential complications have not been considered or at least reported in relevant clinical studies exclusively for prebiotics.
Biocontrol is the use of one or more microorganisms to inhibit or control other organisms. The control may require a living organism, effecting by indirect actions or agents (such as the production of bacteriocins). Biocontrol is related with the activities of the lactic acid bacteria, probiotics, bacteriocins, endolysins, bacteriophages, and “protective cultures” and the others. Some of the biocontrol-based preservations are microbial interference, lactic acid antagonism, bacteriocin production, endolysis, information, and bacteriophages.

The most critical criterion for the success of a biocontrol product is whether or not it performs effectively under commercial conditions and provides an acceptable and consistent level of control of the target disease(s) (Schnürer and Jonsson, 2011).

Large-scale production of a formulated biocontrol agent is required in order to conduct meaningful tests. These are costly trials to conduct and most often are done in association with a private company wishing to commercialize the biocontrol product (Sundh and Melin, 2011).

5. Concluson

Using of biocontrol methods and approaches to control food contamination have been grown in the past 20 years from a novel discovery to a full-fledged science. Research groups worldwide are identifying new microbial isolates, evaluating their potential as biocontrol agents and seeking to partner with industry. While it was predicted that the success of biocontrol would be relatively easy compared with conventional agents, to date only a few commercial products are available, and these are used only on a very limited basis. The reasons for the limited success are several, but are mainly due to variability in the performance of antagonists, the availability of several standard and new synthetic agents that perform well, and reluctance on the part of end users to adopt new approaches and methods that may or may not be easy to incorporate into existing practices. In addition, problems associated with the patenting, registration and large-scale fermentation of the agents has also posed difficulties. Despite these challenges, interest in the use of biological approaches to manage and reduce contamination in food, as well as other agricultural needs, continues to grow. Researchers, regulatory groups, and environmental advocates are coming together to define the problems that need to be dealt with and the scientific knowledge that will be needed to address the barriers limiting success. It is anticipated that great strides will be made in the next 10 years.


9. Epp, T. 2008. Foodborne zoonoses: challenges for the veterinary profession. Large Animal Veterinary 8 (6), 1-6. Western College of Veterinary Medicine, University of Saskatchewan, Canada.


