Bacteriological and molecular studies on Salmonella species isolated from poultry farms

1Ashraf, A. Abd El-Tawab, 1Enas, Abdelbaset, 2Abd Elhalim, M. Hegazy, 2Rania, Abd-Elmonem

1. Department of Microbiology, Faculty of Veterinary Medicine, Benha University, Egypt
2. Department of Poultry Disease, Animal Health Research Institute, Agriculture Research Center Giza, Egypt.

Abstract

This study comprise the examination of 100 samples of feed (40), water (36) and litter (24) collected randomly from different chicken shops, houses and farms in Kafr El-Sheikh Governorate. Results of this survey revealed isolation of 14/100 (14%) Salmonella species (3)(12.5%) isolates from litter, (5)(13.8%) isolates from water and (6)(25%) isolates from farms. The prevalence rate to Salmonella was (14%). Sensitivity test was made and isolates exhibit resistance against ciprofloxacin and cefotaxime with (89%) and highly sensitivity to amikacin with (100%) so amikacin is the first drug choice for treatment of Salmonella infection. A PCR based assay was developed to detection of Salmonella in samples and to evaluate plasmid and chromosome-borne virulence genes (stn-invA) which considered as a target genes for the detection of Salmonella. The results of detection of resistance genes (qnr S-blaTEM) as a resistance genes in all isolates of Salmonella.

Key words: Antibiogram, Feed, Resistance and virulence genes, Salmonella

1. INTRODUCTION

Salmonella is a Gram-negative, non-spore forming rod which can ferment glucose belonging to the family Enterobacteriaceae and can reduce nitrate to nitrite. (Grimont et al., 2000)

Members of the genus Salmonella are facultative anaerobes; motile or non-motile by flagellae, and most heterogenous bacteria. Eller Mier and Slauch, (2006)

Certain serotypes of Salmonella as Enteritidis Can penetrate (invade) poultry reproductive system causing contamination of egg contents which has been a major cause of human illness for many years (Gantios et al., 2009).

Salmonella species spread from poultry to human, and also from human to human, often through foods as eggs and meat. Salmonella can cause an intestinal infection of human known as salmonellosis or enteric fever (Chowdhuri et al., 2011).

Salmonella Enterica is one of the major borne diseases due to its endemic nature, high morbidity and characterized by its zoonotic
importance on high public concern (Moussa et al., 2012).
Most of Salmonella serotypes are pathogenic to the human. The infection with Salmonella in the human called Salmonellosis which has common symptoms as abdominal pain, diarrhea, muscle pain, fever, Drowsiness, nausea and vomiting (Andino and Hanning, 2015).
Eggs and poultry products are the main reservoirs of salmonellae. Salmonella can pass from them through the food chain and transmitted to the human (Howard et al., 2012).
Pathogens in poultry products are vary depending on the country, the system of poultry production and the control measures in the place of the production poultry may infect with and carry the Salmonella serovars with no specific clinical picture of the disease (Herikstad et al., 2002).
The widely used antimicrobial agents for poultry growth promotion or increasing production and also in the treatment aims can raise the concern with regard to the antimicrobial resistance, which are observed widely in many Salmonella serovars (Duong et al., 2006).
The majority of antimicrobial resistant phenotypes of Salmonellae and other pathogens are obtained from the plasmids or extra chromosomal genes. Plasmids carry DNA mobile elements, as transposons or integrons which are very important in the occurrence of multi-drug resistance among the gram-negative bacteria or Salmonellae (Harbottle et al., 2006).
The objective of this study is the bacteriological and molecular studies of Salmonella species isolated from poultry feed. Salmonella is considered as one of the major economic problems facing poultry industry all over the world because of its significant losses which are mainly due to poor feed conversion and carcass condemnation at processing.

2. MATERIALS AND METHODS

2.1. Sampling:
A total of 100 chicken samples were taken from poultry houses, chicken shops and broiler farms (24 litter, 40 feed and 36 water), at different intervals throughout February 2017 and February 2018 located in Kafr-Elsheikh. Samples were collected as aseptically as possible to prevent cross contamination.

2.2. Isolation and Identification of Salmonella (ISO 6579, 2002)
All samples cultured in peptone water (Oxoid) were incubated at 37°C for 24h after which they were inoculated in Rappaport-Vassiliadis broth (Oxoid) at the ratio of 1:10 and incubated at (42±1°C) For 24±2h. Per iso 6579:2002 and then streaked on XLD agar (Oxoid) which was further incubated for 24h at 37°C. The suspected colonies (pink with black center) and typical colony on SS agar (Oxoid) (colorless with or without black center) were picked, then stored on semi-solid agar for further investigation. All the suspected pure colonies of suspected Salmonellae were furtherly subjected to biochemical reactions (Methyl red, Voges-Proskauer, Indole, Oxidase tests according to Cruickshank et al., (1975) and Urease test (Edwards and Ewing 1972).

2.3. Serological typing of Salmonella organisms
Salmonella isolates that were preliminary identified biochemically, were subjected to serological identification according to Kauffmann-White scheme (Kauffmann, 1974).

2.4 Antimicrobial susceptibility tests:
Media used antibiogram assay according to (ISO 6579 2002) . The Mueller-Hinton agar medium (Nccls) (Oxoid) National Committee for Clinical Laboratory Standards
"NCCLS" (2001) Salmonella isolates were examined in vitro for their susceptibility to the following antimicrobial disc as cefotaxime (CTX), 30 μg, doxycycline (DO), 20 μg, cephadine (CE), 20 μg, Erythromycin (E) 20 μg, amikacin (AK), 30 μg, flumequine (FL), 30 μg, ceftazidime (CAZ), 30 μg, lincomycin (L-MY), 25 μg, Clindamycin (DA), 25 g, spectinomycin (SPT-SH), 20 g, Ciprofloxacin (CIP), 5 μg and Neomycin (N), 30 μg.

2.5. Identification of isolates of Salmonella by PCR

According to The QIAamp DNA mini kit instructions (Sambrook et al., 1989) The QIAamp mini spin column was carefully opened and 500 μl buffer AW2 were added without wetting the rim. The cap was closed, and centrifuged at full speed for 3 min. The QIAamp mini spin column was placed in a new 2 ml collection tube and the old collection tube was discarded with the filtrate. Centrifugation at full speed for 1 min was done. The QIAamp mini spin column was placed in a clean 1.5 ml microcentrifuge tube, and the collection tube containing the filtrate was discarded. The QIAamp mini spin column was carefully opened and 100 μl buffer AE were added. The QIAamp mini spin column was incubated at room temperature (15-25°C) for 1 min, and then centrifugated at 8000 rpm for 1 min. Oligonucleotide primers used in PCR(Table 1, 2, 3) for detection of resistance genes (blaTEM, qnrS) and virulence genes (Stn, invA) of salmonella:

2.6 Detection of Salmonella resistance gene: according to (Colom k., 2003)

In this study, a total of four Salmonella serotypes were S. Kentuck, S. Blegdam, S. Ferruch and S. Yovokome were screened for presence of two resistance genes including qnrS and blaTEM

A total of 9 Salmonella isolates were three S. Kentuck, three S. Blegdam, two S. Ferruch and one S. Yovokome. Four different types of Salmonella and were screened by multiplex PCR to detect two virulence genes invA, stn. Cycling conditions of the primers during cPCR Temperature and time conditions of the two primers during PCR are shown in (Table 4)

Table 1 Primers for detection of resistance gene of Salmonella

<table>
<thead>
<tr>
<th>Primer</th>
<th>Sequence 5' 3'</th>
<th>Amplified product</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>blaTEM F : ATCAGCAATAAAACCAGC</td>
<td>516 bp</td>
<td>Colom et al. (2003)</td>
<td></td>
</tr>
<tr>
<td>R : CCCCGAAGAACGTTTTC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>qnrS F : ACGACATTCGTTCAACTGCAA</td>
<td>417 bp</td>
<td>Robicsek et al. (2006)</td>
<td></td>
</tr>
<tr>
<td>R : TAAATTGGCACCCCTGTAGGC</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2 primers used in PCR. For detection of virulence genes of Salmonella:

<table>
<thead>
<tr>
<th>Primer</th>
<th>Sequence 5' 3'</th>
<th>Amplified product</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>stn F : TIG TIG CGC TAT CAC TGG CAA CC</td>
<td>617 bp</td>
<td>Murugkar et al. (2003)</td>
<td></td>
</tr>
<tr>
<td>R : ATT CGT AAC CCG CTC TCG TCC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R : TCAATCGCACCCTGAAGGACC</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Studies on salmonella species isolated from poultry farms

Table (3) Preparation of PCR Master Mix according to Emerald Amp GT PCR master mix (Takara) code No. RR310A kit as shown in

<table>
<thead>
<tr>
<th>Component</th>
<th>Volume/reaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emerald Amp GT PCR mastermix (2x premix)</td>
<td>12.5 µl</td>
</tr>
<tr>
<td>PCR grade water</td>
<td>4.5 µl</td>
</tr>
<tr>
<td>Forward primer (20 pmol)</td>
<td>1 µl</td>
</tr>
<tr>
<td>Reverse primer (20 pmol)</td>
<td>1 µl</td>
</tr>
<tr>
<td>Template DNA</td>
<td>6 µl</td>
</tr>
<tr>
<td>Total</td>
<td>25 µl</td>
</tr>
</tbody>
</table>

Table (4) Cycling conditions of the different of primers during PCR:

<table>
<thead>
<tr>
<th>Gene</th>
<th>Primary denaturation</th>
<th>Secondary denaturation</th>
<th>Annealing</th>
<th>Extension</th>
<th>No. of cycles</th>
<th>Final extension</th>
</tr>
</thead>
<tbody>
<tr>
<td>stn</td>
<td>94°C</td>
<td>94°C</td>
<td>59°C</td>
<td>72°C</td>
<td>35</td>
<td>72°C</td>
</tr>
<tr>
<td></td>
<td>5 min</td>
<td>30 sec</td>
<td>40 sec</td>
<td>45 sec</td>
<td></td>
<td>10 min</td>
</tr>
<tr>
<td>invA</td>
<td>94°C</td>
<td>94°C</td>
<td>55°C</td>
<td>72°C</td>
<td>35</td>
<td>72°C</td>
</tr>
<tr>
<td></td>
<td>5 min</td>
<td>30 sec</td>
<td>40 sec</td>
<td>30 sec</td>
<td></td>
<td>7 min</td>
</tr>
<tr>
<td>blaTEM</td>
<td>94°C</td>
<td>94°C</td>
<td>55°C</td>
<td>72°C</td>
<td>35</td>
<td>72°C</td>
</tr>
<tr>
<td></td>
<td>5 min</td>
<td>30 sec</td>
<td>40 sec</td>
<td>45 sec</td>
<td></td>
<td>10 min</td>
</tr>
<tr>
<td>qnrS</td>
<td>94°C</td>
<td>94°C</td>
<td>55°C</td>
<td>72°C</td>
<td>35</td>
<td>72°C</td>
</tr>
<tr>
<td></td>
<td>5 min</td>
<td>30 sec</td>
<td>40 sec</td>
<td>45 sec</td>
<td></td>
<td>10 min</td>
</tr>
</tbody>
</table>

3. RESULTS

3.1. prevalence of Salmonella:
The Prevalence rate of Salmonella was 14%. Which revealed 14 Salmonella isolates from poultry samples (6 isolates from feed, 5 isolates from water and 3 isolates from litter).

Table (5) Serotyping of isolated Salmonella from chicken in feed, litter and water samples

<table>
<thead>
<tr>
<th>Salmonella isolates</th>
<th>No. of isolates</th>
<th>Serotyping</th>
</tr>
</thead>
<tbody>
<tr>
<td>S. Kentucky</td>
<td>3</td>
<td>(8, 20 :I : Z0)</td>
</tr>
<tr>
<td>S. Bledam</td>
<td>3</td>
<td>(9, 12 : g,m,q.)</td>
</tr>
<tr>
<td>S. Yovokome</td>
<td>1</td>
<td>(8, 20 : d: 1.5)</td>
</tr>
<tr>
<td>S. Ferruch</td>
<td>2</td>
<td>(8, e, h:1.5)</td>
</tr>
<tr>
<td>Total isolates</td>
<td>9</td>
<td></td>
</tr>
</tbody>
</table>

3.2. Serotyping of Isolated Salmonella:
The isolates were three S. Kentucky (3/9) three S. Bledam (3/9), one S. Yovokome (1/9) and two S. Ferruch (2/9) in table (5).
3.3. Sensitivity of Salmonella strains in different antibiotics

The nine isolated Salmonella serovars were tested for antibiotic sensitivity for (cefotaxime, ciprofloxacin, cephradine, clindamycin, erythromycin, flumequine, neomycin, lincomycin, ceftazidine, doxycycline, Spectinomycin and amikacin). We were found to be (89%) resistant to cefotaxime and ciprofloxacin, while all of isolates Salmonella serovars were found to be (100%) sensitive to amikacin.

Table (6) Numbers and Percentages of Salmonella Serotypes exhibiting resistance.

<table>
<thead>
<tr>
<th>Antimicrobial agent</th>
<th>Resistant isolates</th>
<th>Sensitive isolates</th>
<th>Intermediate isolates</th>
<th>mediate</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No</td>
<td>%</td>
<td>No</td>
<td>%</td>
</tr>
<tr>
<td>Cefotaxime</td>
<td>8</td>
<td>89</td>
<td>1</td>
<td>11</td>
</tr>
<tr>
<td>Ciprofloxacin</td>
<td>8</td>
<td>89</td>
<td>1</td>
<td>11</td>
</tr>
<tr>
<td>Cephradine</td>
<td>5</td>
<td>55.5</td>
<td>4</td>
<td>44.5</td>
</tr>
<tr>
<td>Clindamycin</td>
<td>5</td>
<td>55.5</td>
<td>4</td>
<td>44.5</td>
</tr>
<tr>
<td>Erythromycin</td>
<td>6</td>
<td>66.6</td>
<td>4</td>
<td>33.4</td>
</tr>
<tr>
<td>Flumequine</td>
<td>4</td>
<td>44.5</td>
<td>5</td>
<td>55.5</td>
</tr>
<tr>
<td>Neomycin</td>
<td>4</td>
<td>44.5</td>
<td>5</td>
<td>55.5</td>
</tr>
<tr>
<td>Lincomycin</td>
<td>4</td>
<td>44.5</td>
<td>5</td>
<td>55.5</td>
</tr>
<tr>
<td>Ceftazidime</td>
<td>2</td>
<td>22.2</td>
<td>7</td>
<td>77.8</td>
</tr>
<tr>
<td>Doxycycline</td>
<td>3</td>
<td>33.3</td>
<td>5</td>
<td>55.5</td>
</tr>
<tr>
<td>Spectinomycin</td>
<td>3</td>
<td>33.3</td>
<td>5</td>
<td>55.5</td>
</tr>
<tr>
<td>Amikacin</td>
<td>0</td>
<td>0</td>
<td>9</td>
<td>100</td>
</tr>
</tbody>
</table>

3.4. Detection of Salmonella resistance gene:

It was found that all four Salmonella isolates. The blaTEM amplicon (516 bp) was obtained in all Salmonella isolates and qnrS amplicon (417 bp) was obtained in all nine Salmonella isolates (Fig. 1). A total of 9 Salmonella isolates were three S. Kentucky, three S. Blegdam, two S. Ferruch and one S. Yovokome. Four different types of Salmonella and were screened by multiplex PCR to detect two virulence genes invA, stn (284pb, 617pb, respectively (Fig. 2). The obtained results revealed that invA was the most prevalent in all Salmonella isolates thus, all the Salmonella isolates were found highly invasive to cells. Also, Salmonella enterotoxin encoding gene (stn) was found in of the isolates.
Studies on salmonella species isolated from poultry farms

Fig (1) Agarose gel electrophoresis showing specific PCR of Salmonella serotypes using primer set for qnrS gene (417bp)- L= ladder & Lane (P)= positive control & Lane (N)= negative control and Lanes (1-2-3-4) were positive for this gene and primer set for bla TEM gene (516 bp)- L= Ladder & Lane (P)= Positive control & Lane (n)= negative control and lanes (1-2-3-4) were positive for this gene.

3.5 Detection of Salmonella Virulence associated genes

Fig (2) Agarose gel electrophoresis showing specific PCR of Salmonella serotypes using primer set for invA gene (284 pb)- L= Ladder & Lane (P)= positive control & Lane(N)= negative control and Lanes (1-2-3-4) were positive for this gene and primer set for Stn gene (617bp)- L= Ladder & Lane (P)= positive control & Lane (N)= negative control and lanes (1-2-3-4) were positive for this gene.

4. DISCUSSION

Salmonella in poultry became a big problem due to its economic importance in all stages of poultry industry from the production line to the marketing. The extensive usage of antibiotics in humans and veterinary medicine raises the possibility of multidrug resistant Salmonellae (Cruchaga et al., 2001). In this study, (100) Samples were collected from litter, water and feed from various broiler farms, houses and poultry shops in Kafr El- Sheikh. These samples were examined for the presence of Salmonella and showed that (14%) of samples were positive for Salmonella. The positive samples were (6) from feeders, (3) from litter and (5) from water.

The current results were partially agreed with Schluter et al, (1994) where they reported an isolation rate of (13.3%) from flocks of lying chicken and to some extent with Murugkar, (2005) who examined (231) cloacal swabs from diarrheic poultry and found (34) isolates of Salmonella with (14.7%) prevalence rate. In addition to Dahal (2007) when detected Salmonella in (13%) of totally (400) examined samples and finally also agreed with the results of Yhiler and Bassey (2015), where they reported Salmonella from (170) samples of feeders, drinkers and litter with (12.9%) prevalence.
rate in water samples, (14.1%) in litter and (10%) in feeders.

The results of this study may increase slightly over the results of Ammar et al, (2010) Who recorded a prevalence rate of (12%) of S. Typhimurium which was the most common isolated Salmonella serovar from samples of broilers and laying breeding reproducers in Algeria. Also, the results of Reham (2004) with (12%) prevalence rate for isolations of Salmonella Species detected from samples of broilers.

On the other hand, the results of this study are less than the results reported Osman (2014) who isolated (45) Salmonella species from collected (150) samples from broiler farms with prevalence rate (30%), Harison et al. (2001) when found (29%) prevalence rate of Salmonella in (300) raw chicken samples collected from chains of supermarket and shops of butchers, Cardinal et al, (2003) when recorded (32%) prevalence rate after examining (300) carcasses of chicken from shops of retail in Dakar, Senegal, Bada-Alambedji et al. (2006), who recorded (62.5%) prevalence rate of Salmonella in (120) samples of chicken carcasses from flocks, super markets and poultry slaughter houses, Soomro et al, (2010) when recorded (38%) prevalence rate.

In the present study, serotyping results of isolated Salmonella from chicken were 3/9 (33.3%) of S. Kentucky, 3/9 (33.3%) S. Blegdam, 2/9 (22.2%) S. Ferruch and 1/9 (11.1%) S. Yovokome. This results agreed with the results of Bada-Alambedji et al, (2006) who found (30%) of the isolated Salmonella was S. Kentucky as the most frequent serotype. Also, found different serotypes as S. Muenster (13.3%), S. Brancaster (8.8%), S. Hadar and S. Enteritidis (6.6%). Also, The results were disagreed with the results of Abd El- Tawab (2015) when found S. Kentucky in isolations from chicken samples , Also found other serotypes as S. Typhimurium, S. Daula, S. Colindale, S. Bargny, S..Newport, S. Apeyerme, Molade, S. Tamale, S. Labadi, S. Lexington, S. Enteritidis, S. Magherafelt, S. Santiago, S. Rechovot, S. Takoradi and S. Shubra., Hassan et al, (2016) who found S. Kentucky in (25.45%) of the isolations and also found Salmonella Infantis (56.36%), S. Enteritidis (5.45%), S. Ferruch and S. Virchow , Ammar et al, (2016) Was disagreed with the current findings where S. Kentucky in (12.5%) of isolates of Salmonella beside other serotypes S. Enteritidis (56.25%) and S. Typhimurium (18.75%).

In The present work, Salmonella showed highly resistance (89%) to ciprofloxacin and cefotaxime and high sensitivity (100%) to amikacin which Was agreed with Hassan et al., (2016) who found S. Kentucky isolates resistance against the majority of antibiotics where 100% resistant to ciprofloxacin, 85% showed resistance against both of cefotaxime and ceftazidime. Also, our results agreed with results of Rania (2017) who detected 100% sensitive to amikacin and 100% resistance to ciprofloxacin. Also. Partially was agreed with Marwa., (2017) who detected 100% resistance of Salmonella to cefotaxime.

The antibiogram was results disagreed with Yah and Eghafone (2007) who reported that Salmonella isolates from chicken were high resistant to tetracycline, sulphamethaxazole, trimethoprim and lower resistant to ciprofloxacin and cefotaxime, Akter et al. (2007) who reported that Salmonella serovars isolates were sensitive to ciprofloxacin (80%).

In this study, The blaTEM gene was detected 100% of Salmonella isolates that discovered resistant to cefotaxime which was (B – lactams) are broad spectrum antibiotic agents widely used.

This result was agreed with Yojiaro et al, (2010) who showed blaTEM-1 and blaTEM-104 from gram negative bacteria isolated from farms in Egypt .Also Ahmad and Shimamoto (2012) analyzed the mechanisms of multidrug- resistance in 21 isolates of S. Enterica serovar Enteritidis and four isolates of S. Enterica serovar Typhimurium also, they identified bla cmv-2 in isolates of S. Enterica serovar Enteritidis. Also, Chen et al. (2004) identified the blaTEM-1 in Salmonella Enterica serovars in United States and China.
Studies on salmonella species isolated from poultry farms

The for mentioned results was higher than result of Amira et al. (2014) who identified B-lactamase encoding genes, blaTEM (40%)- also, Ahmed et al. (2009) who Identified (50%) of blaTEM in 47 S. Typhimurium out of ninety-four S. Enterica isolates from animal in Japan.

In the Salmonella isolates showed more resistance to fluoroquinolones in antimicrobial susceptibility tests which were examined by PCR for qnrS (Plasmid-mediated quinolones resistance genes) detected 100% were positive for qnrS. This result was higher than wafaa et al. (2015) who detected (18 %) 4/22 positive for qnrS while Ahmed et al. (2009)who reported that qnrS and qnrB were detected in two isolates of S. Enterica serovar Enteritidis and one isolate of S. Enterica serovar Typhimurium, respectively. qnrS was identified previously in S. Enterica serovar Typhimurium isolated from animal in Japan.

In the present results, stn gene was found in 100% of the isolates. These results were the same as reported by Das et al., (2012) Barman et al., (2013), Sallam et al., (2014), Naik et al., (2015) and Amira (2015) who reported 100% were positive for stn gene.

While lower results are reported by Rahman et al., (2011), , Shi et al.,(2013), Ammar et al., (2016) who reported stn gene 38.23%, 95.7%, and 41.7% respectively.

This result is similar exactly to Das et al .,(2012) who reported that invA and stn were detected in (100%) and 100% isolates respectively in total (134) samples of poultry feed, Zou et al. ,(2012) who detected stn and invA in all (425)Clinical S. Enteritidis isolates of human origin,

All of serovars produced 284 pb invA gene and 617 pb amplicon for enterotoxin stn gene. that they are the specific targets of Salmonella identification and are capable of producing gastroenteric illness to human.

5. It was concluded that : Salmonellae were isolated with incidence rate (14%).Salmonellae isolation from chicken feed were (15%) 6/40, from litter (12.5%) 3/24 and from water (13.8%) 5/36.Serotyping of isolated Salmonella was (3) S. Kentucky (8,20: I: Z6), (3) S. Yovokome (8,20: d:1.5) and (2) S. Ferruch (8,e,h:1.5).

The most isolated Salmonella were found to be resistant to ciprofloxacin (fluoroquinolones) and cefotaxime (cephalosporin) with 89% and 100% sensitive to amikacin so amikacin is the first choice for treatment of Salmonella infection. Molecular characterization of beta lactamase resistance genes in Salmonella serovars showed presence of blaTEM gene in all four isolates of Salmonella (100%) and plasmid-mediated quinolone resistance gene showed presence of qnrS gene in all four isolates of Salmonella PCR technique is used to detection of most common virulent genes to detect two virulence gene invA gene with (100%) (highly invasive to cells) and stn gene with (100%) Salmonella enterotoxin gene in all isolates.

6. CONCLUSIONS

The Present study suggested that invA and stn (virulence genes) are much conserved in Salmonella isolated feed, litter and water. It could be used independently as a gene marker for the rapid detection of the virulent strains of Salmonella.

7. REFERANCES

Berghaus, R.D.; Thayer, S.G.; Law, B.F.; Mild, R.M.; and Hofacre C.L. (2013): "Enumeration of Salmonella and campylobacter spp. in environmental farm samples and processing plant carcass rinses from commercial broiler chicken flocks". Applied and

Studies on salmonella species isolated from poultry farms

National Committee for Clinical Laboratory Standards "NCCLS" (2001): Performance standards for antimicrobial susceptibility testing. Supplement M100-s11. Villanova, PA, USA.

National Committee for Clinical Laboratory Standards "NCCLS" (2001): Performance standards for antimicrobial susceptibility testing. Supplement M100-s11. Villanova, PA, USA.

National Committee for Clinical Laboratory Standards "NCCLS" (2001): Performance standards for antimicrobial susceptibility testing. Supplement M100-s11. Villanova, PA, USA.

Rania, M.E. (2017): characterization of class1 integrons and antibiotic genes in Salmonella enterica isolated from chicken.

Studies on salmonella species isolated from poultry farms

