Cryptococcosis in small ruminants with special references to conventional and molecular methods of diagnosis

Ashraf A. Abd El-Tawab1, Eman M. El-diasty2, Ahmed A. Fawaz3 and Emad E. El-Mougy1
1 Department of Bacteriology, Immunology and Mycology, Faculty of Veterinary Medicine, Benha University, Egypt
2 Department of Mycology, Animal Health Research Institute (AHRI), Ministry of Agriculture, Dokki, Giza, Egypt
3 Tanta lab branch, Animal Health Research Institute (AHRI), Ministry of Agriculture

This work intended to detect yeast species involved in sheep and goats respiratory infections using culturing method, biochemical auto-fluorescence technique and PCR assay. To realize this, 50 lung specimens and 50 samples of nasopharyngeal swabs were collected from clinically diseased sheep and goats freshly slaughtered animals in Kalyobia Governorate. These samples were subjected to fungal examination and the result showed that from the 50 examined sheep and goats lung, 21 lung (42%) had yeast infection and out of 50 nasal swab from sheep and goat 16 (32%) had positive yeast. The architectural detail of bright green-to-yellow green auto-fluorescence spherules, yeast forms Cryptococcus gave stronger and brighter fluorescence it is known to be fast test used in detection to mycotic pneumonia with any late accompanied by haematoxylin and eosin stain (H&E) staining. PCR results proved that Cryptococcus isolates were positive, where for the results of PCR proved that only 3 (17.6%) isolates were positive for Cryptococcus albidus. Considering of this fact this study suggest screening and detecting fungal species using of auto-fluorescence methods and PCR technique in pneumatic sheep and goats.

1. INTRODUCTION

Respiratory disorders represent one of the most important causes of great economic losses among animals. Lung affections in farm animals constitute serious problem that hinders animal production and may result in great losses in animal husbandry. The primary causes of sheep and goat pneumonia are bacteria, followed by viruses and fungi whereas poor hygienic measures and climate disorders are the most predisposing factors to infection (Mahmoud et al., 2005).

Cryptococcus species is yeast like fungus with worldwide distribution; it causes medical problems in humans and animals. The organism occurs as a saprophyte in nature, usually in soil contaminated with pigeon and chicken manure, and is considered an opportunist pathogen. Sporadic cases of mastitis have been also described in other domestic ruminants, including goats; Cryptococcosis has been previously reported in cats, pigeons, and goats in association with caprine pleuropneumonia (Refai et al., 2017).

El-Metwally et al., (2011) reported that Trypan blue agar media for selective confirmation of many pathogenic fungi as Candida, Cryptococcus, Aspergillus and Zygomycetes have been shown to exhibit autofluorescence when H and E stained tissue identification of Prototheca Spp. Identification of sections are examined under a fluorescent microscope without adding any immune-reagents. This test is considered as a rapid screening technique for diagnosis of fungal infections without the delay associated with special stains. Molecular techniques utilizing implication of target DNA provide alternative methods for diagnosis and identification. PCR-based detection of fungal DNA sequences can be rapid, sensitive, and specific. Coding regions of the 18S, 5.8S, and 28S nuclear rRNA genes evolve slowly, are relatively conserved among fungi, and provide a molecular basis of establishing phylogenetic relationships. Between coding regions there is the internal transcribed spacer 1 and 2 regions (ITS1 and ITS2, respectively) which evolve more rapidly and may therefore vary among different species within a genus. Thus, PCR implication may facilitate the identification of ITS region DNA sequences with sufficient polymorphism to be easily identification to its regions (Chen et al., 2000). This study targets for isolation and identifying possible causative yeasts pathogen of such respiratory disease conditions as direct methods of their diagnosis, beside evaluation the results of auto-fluorescence in identification of fungi.

2. MATERIAL AND METHODS

2.1. Collection of samples
A total of 50 lung samples of small ruminant (sheep and goats 25 samples for each) were collected from abattoirs at Kalyobia Governorate. Samples were collected from freshly dead diseased animal suffering from respiratory manifestation. The samples were visually examined for gross lesions. Each tissue sample was divided into two parts, one part was kept in a sterile polyethylene bags in an ice box under aseptic conditions for mycotic isolation and the second part was immersed in 10% formalin saline for
was measured (mm) and judged according to (NCCLS, 2002).

2.8. PCR Amplification
DNA extraction from three strains Cryptococcus albidus strains using Patho Gene-SpinTM as described by DNA/RNA Extraction kit iNtRON cat. No. 17154 Korea. The PCR primers used Forward CNa-70-S 5’ATTGCGTC
CACAAAGGAGCT-3’ and Reverse CNa-70-A 5’ATTGCGTCATG TACGTGGA-3’ oligonucleotide
primer used in PCR reactions were synthesized by Sigma Company, (Germany) at bp 500 (Hideo Aoki et al., 1999).
DNA samples were tested in 50 µl reaction volumes in a
0.2 ml. epipendorf tube, containing 25 µl PCR Mix which was composed of (10X buffer, 10mM d NTPs mixture, Taq polymerase), 1 µl of each primers, 2 µl target DNA, complete to a final volume of 50 µ with sterile
deionizer water. PCR amplification conditions for C.
albidus strains were: 5 min initial denaturation step followed by 38 cycles at 94 °C for one min, 38 cycles at
590°C for 1 min and a final extension step at 72 °C for 5 min. Amplification products were electrophoresed in agarose gels (1.5% w/v) (Agarose, Sigma, USA) and stained with ethidium bromide using Gene Ruler 100bp
DNA Ladder for 10 min. for 30 sec and 35 cycles for 72 °C for 1min.

3. RESULTS
Out of 50 examined lung sheep and goats, 21 lungs (42%) had yeast infection and out of 50 nasal swab from sheep and goat 16 (32%) had positive yeast result illustrated in Table (1). The rate of yeast infection varied from species to another, higher infection rate of 60% (15/25) and 36%
(9/25) in lung and nasal swab, respectively. In sheep. However, goat was the lower infected (24%, 6/25)
and 28% (7/25) in lung and nasal swab, respectively.

Table (1): Infection rate of pneumonic cases Prevalence of pneumonia from examined samples depending upon on culture growth

<table>
<thead>
<tr>
<th>Animal</th>
<th>Lung</th>
<th>%</th>
<th>Nasopharyngeal swabs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sheep</td>
<td>25</td>
<td>15</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>25</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>9</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>36</td>
</tr>
<tr>
<td>Goats</td>
<td>25</td>
<td>6</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>25</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>28</td>
</tr>
<tr>
<td>Total</td>
<td>50</td>
<td>21</td>
<td>42</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>50</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>16</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>32</td>
</tr>
</tbody>
</table>

It is obvious from results obtained in table (2) that out of
15and 6 examined lung tissue of sheep and goats with auto-
fluorescent 10 (66.7%) and 2 (33.3%) lung tissue exhibited
strong enough fluorescence that the technique could be
helpful.

Table (2): Infection rate of pneumonic cases depending on Auto-
fluorescence examination

<table>
<thead>
<tr>
<th>Animal</th>
<th>Lung</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sheep</td>
<td>15</td>
<td>10</td>
</tr>
<tr>
<td>Goat</td>
<td>6</td>
<td>2</td>
</tr>
</tbody>
</table>

As depicted in Table (3) yeasts belong to genus Candida
and Cryptococcus was distributed among the examined
animals. C. gillermondii and C. albidus were equally
distributed among the examined lung samples of sheep 5
(33.3%, each). While in goats lung samples C. tropicalis
and C. albidus were equally distributed 2 (33.3%, each), C.
gillermondii and C. tropicalis were isolated from nasal
swabs of sheep 4 (44.4%) and 5 (55.6%), respectively. In
all instances, C. tropicalis was the predominant one.
The auto-fluorescent yeast species identified were *C. albicans* (Fig. 4), within lung tissues and they exhibited strong enough fluorescence that the technique could be helpful. The architectural detail of bright green-to-yellow green auto-fluorescence spherules, yeast forms *Cryptococcus* gave stronger and brighter fluorescence.

In the present study, PCR was used for the identification of three isolates (2 strains from sheep and one from goats) from seven *C. albicans* strains representative isolates. Using the described primer amplify DNA from all three tested yeasts representing a broad range of clinically relevant yeasts. The primer used gives an amplicon (500 bp) from all isolates tested.

The results recorded in Table (4) showed that Voriconazole 200mg, Itraconazole 10µg/ml and Clotrimazole 10 mcg were more effective than Nystatin 100µg/ml, Amphotericin B100µg/ml and Fluconazole 10µg/ml in inhibiting *C. albicans*.

4. DISCUSSION

Pneumonia is regarded as a disease complex, involving interactions between the host (immunological and physiological), multiple etiological agents (viral, bacterial, mycoplasma, parasitic and mycotic), beside environmental
factors like temperature, humidity, dust levels, etc (Taylor et al., 2010 and Dar et al., 2014). Regardless of the causative agents, respiratory disease adversely affects the farms, health condition of animals, it represents the main causatives of deaths in lambs and low productivity of old animals in different countries (Bell, 2008). Mycotic pneumonia in some cases is very dangerous due to lack of quick laboratory diagnosis and usually pneumonia is produced as the result of mixed infection with bacteria. Mycotic pneumonia in goats due to C. gatti was reported in Spain by (Baro et al., 1998). The strains were isolated from lung (10 samples), liver (1 sample), and brain (2 samples) tissue specimens from six goats suffering from predominantly severe pulmonary disease that were autopsied. Mycotic pneumonia in some cases is very dangerous due to lack of quick laboratory diagnosis and usually pneumonia is produced as result of mixed infection with bacteria. Elston (2001) and Mathai et al. (2008) reported that many pathogenic fungi as Candida, Cryptococcus, Aspergillus and Zygomycetes have been shown to exhibit autofluorescence when H and E stained tissue sections are examined under a fluorescent microscope without adding any immune-reagents. This test is considered as a rapid screening technique for diagnosis of fungal infections without the delay associated with special stains (Gutierrez and Garci, 1999; Rao et al., 2008; El-Metwally et al., 2011). Results of effective antifungal against C. albicus agree with Gomez-Lopez et al., (2005) who reported that Fluconazole, Itraconazole and Voriconazole are inactive in vitro against the majority of clinical isolates of fungi species, while Amphotericin B exhibit a good activity. While, Beltaire et al. (2012) who reported that fungal strains isolated from animal suffering pneumonia showed resistance rates of 19% and 2% for Itraconazole and Fluconazole, respectively. An early diagnosis and prompt therapy can reduce the morbidity and mortality of Cryptococcus infection. The complex interactions between the agent, host and environment need to be elucidated. More studies are required to investigate the role of Cryptococcus in immunocompetent as well in immune-suppressed subjects. Phenotyping methods not reach to a high grade in specificity of Cryptococcus spp. identification while, PCR plays a confirmative role in and more accurate in detection of Cryptococcus spp. in diseased and apparent healthy animals. We suggest more sanitary conditions in rearing of sheep and goats to avoid predisposing factors leads to occurrence of pneumonia. Three isolates of the C. albicus strains which had previously been identified biochemically with RapID yeast plus system were molecularly identified using The PCR primers used Forward CNa-70-S and Reverse CNa-70-A oligonucleotide primer used in PCR reactions. The size of the resulting amplicons at bp 500. The detection of Cryptococcus species DNA by PCR has been studied by a small number of groups (Evertsson et al., 2000 and Bialek et al., 2002). Bialek et al. (2002) concluded that PCR assay could be broadly applicable. Our PCR results compared favorably with the reported detection limits of 10 cells ml and could be used for regular routine diagnosis because of the high sensitivity

5. CONCLUSION

In the present study, Cryptococcus was the most pathogenic cause of pneumonia from sheep and goats. Traditional ways are not sufficient for diagnosis of large number of yeasts. Genotypic way is good for yeast diagnosis. Autofluorescence way is known to be quick test to identify mycotic diseases with no retard accompanied without using any specific strains. However, molecular identification is considered to be fast to detect fungi and strengthen the epidemiological data that reveal higher number of mycotic pathogens.

CONFLICT OF INTEREST

The authors declare that they have no conflicts of interest for current data.

6. REFERENCES

