1. INTRODUCTION

Meat products are important components of daily meals which have a role in filling the gap of protein deficiency and can be considered the best choice in solving human nutritional problems because of their taste, low-cost nutritional value. FAAs and positive decarboxylase microorganisms and suitable environmental conditions are considered the main factors of biogenic amines formation in the foods (Stadnik and Dolatowski, 2010). Thus, BAs become one of the concerns about food hygiene and are targeted by FDA and EFSA because of their toxicological effect on human health when intake in excessive amount inducing adverse reactions especially in sensitive people and in those with genetically impaired detoxification system, gastric intestinal diseases or due to taking of MAOIs and DAsOs that used as an antidepressant, antihistamines, antimalarial agents, psycho-pharmaceutics (Ruiz-Capillas and Herrero, 2019), also there are more than 1300 million smokers worldwide that consuming alcohol and smoking tobacco which proved to be part of the important factors causing potentiation to the toxicological consequences of biogenic amines poisoning because of their ability able to reduce MAO levels by 40% together with other components of cigarette (Broadley, 2010).

Histamine toxicological effect leads to allergic reactions that characterized by headaches and dizziness, excessive sweating, nasal discharge, skin rashes and itching, edema, urticaria, difficulty in breathing and inability to swallow, vomiting and diarrhea, bronchial spasm, tachycardia, and blood pressure disorders (Mor et al., 2005). On the other hand, tyramine causes the releasing of catecholamine from CNS and adrenal medulla which causes migraine, neurological manifestation, vomiting and nausea, respiratory manifestation, increased blood pressure and heartbeats that lead to hypertensive crisis, and brain disorders like schizophrenia, Parkinson’s disease, and Reyes’ syndrome which are more dangerous consequences (Ladero et al., 2010). Regarding cadaverine and putrescine, they are not considered toxic biogenic amines, but they are responsible for the formation of carcinogenic N-nitrosamines in the presence of nitrate and nitrite salts which are mainly used as curing agents in meat products processing. They also interfere with the detoxifying mechanism which is responsible for metabolizing and detoxifying biogenic amines in the human body enhancing the toxicological action of histamine and tyramine (De Mey et al., 2014).

Accurately, considerable research has been occurred recently for the detection of biogenic amines and reduce their occurrence in foods, but unfortunately, there is lower attention has been paid to evaluating the...
biogenic amines concentrations in meat products that are more consumed all over the world, even these studies that have been done were generally depended on the fermented meat products neglecting the other types of products. Therefore, this research has been carried out to determine the levels of four biogenic amines in some frozen meat products samples of beef burger, kofta, and sausage (30 of each) were collected from different supermarkets under different levels in Qalyubia governorate.

2. MATERIAL AND METHODS

2.1. Sampling
Ninety samples of frozen meat products of beef burgers, kofta, and sausage (30 of each) were randomly collected from different supermarkets in Qalyubia Governorate. Samples were transferred as rapidly as possible to the laboratory for the measuring of four biogenic amines concentrations (histamine, tyramine, putrescine, and cadaverine) by HPLC according to the technique protocol recommended by Krause et al. (1995) and Pinho et al. (2001).

2.2. Samples extraction
In an alarm mixer, 25 grams from each sample was mixed with 125 ml tri-chloro-acetic acid (5%) for three minutes, and then filtration was done using Whatman No. 1 filter paper. Then, 10 ml of the filtrated sample with 4-gram NaCl and 1 ml of NaOH (50 %) were moved to a suitable glass tube and were extracted three times (2 min of each time) with 5 ml of n-butanol: chloroform (1:1). The top clear supernatant was added to 15 ml n-heptane with 1.0 ml portions of 0.2 N HCl in a separation funnel and made extraction three times and transferred the upper layer to a closed glass tube and put in a water bath at 95°C for evaporation till drying.

2.3. Formation of dansylamines
Accurately, from each extract or standard, 100 μl have been taken and transferred to 50 ml dried vial with adding 0.5 ml saturated NaHCO₃ and 1 ml of dansyl chloride then carefully closed the vial and shackled well using a vortex shaker to avoid spillage and spattering, after that the vials were incubated at 55°C/45 min. Further, adding 10 ml distilled water to the vial then closed well and vigorously shaken using a vortex shaker. Moreover, the dansylamines extraction was made using five ml diethyl-ether and then the top layers have been taken and carefully evaporated till dryness at 35°C. The dried contents were injected into HPLC after dissolving with adding 1.0 ml from Methanol. Finally, the achieved results were evaluated and calculated statistically using the T-Test based on Feldman et al. (2003) technique.

3. RESULTS
From the achieved results in the table (1), histamine concentrations were 53.33%, 63.33%, and 80% in beef burgers, kofta, and sausage examined samples which had the highest levels of histamine (average level was 19.71 ± 1.10 mg/Kg); followed by kofta samples with the mean value of 14.49 ± 0.87 mg/Kg; then beef burgers with the mean value of 11.05 ± 0.62 mg/Kg. It is also indicated that the 75.56% accepted meat product samples in histamine levels where 83.33% of beef burger, 76.67% of kofta, and 66.67% of sausage samples were not exceeding the permissible limits of histamine concentration according to EOS (2010) which stipulated that the MRL mg/kg is 20 mg/Kg in meat product samples.

Table 1 Histamine levels and acceptability of the examined meat Products according to EOS (2010) (30 of each).

<table>
<thead>
<tr>
<th>BAs Products</th>
<th>+Ve samples</th>
<th>Acceptability *MRL= 20mg/kg</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No. %</td>
<td>Min.</td>
</tr>
<tr>
<td></td>
<td>Accepted</td>
<td>unaccepted</td>
</tr>
<tr>
<td>HIST</td>
<td>Beef burger</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>Kofta</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>Sausage</td>
<td>24</td>
</tr>
</tbody>
</table>

Table 2 Tyramine levels and acceptability of the examined meat Products according to EOS (2010) (30 of each).

<table>
<thead>
<tr>
<th>BAs Products</th>
<th>+Ve samples</th>
<th>Acceptability *MRL= 20mg/kg</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No. %</td>
<td>Min.</td>
</tr>
<tr>
<td></td>
<td>Accepted</td>
<td>unaccepted</td>
</tr>
<tr>
<td>TYR</td>
<td>Beef burger</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>Kofta</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>Sausage</td>
<td>21</td>
</tr>
</tbody>
</table>

Table 3 Putrescine levels and acceptability of the examined meat Products according to EOS (2010) (30 of each).

<table>
<thead>
<tr>
<th>BAs Products</th>
<th>+Ve samples</th>
<th>Acceptability *MRL= 20mg/kg</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No. %</td>
<td>Min.</td>
</tr>
<tr>
<td></td>
<td>Accepted</td>
<td>unaccepted</td>
</tr>
<tr>
<td>PUT</td>
<td>Beef burger</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>Kofta</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>Sausage</td>
<td>14</td>
</tr>
</tbody>
</table>
From data recorded in table (2), it was obvious that the tyramine levels were 43.33%, 56.67% and 70% in beef burgers, kofta, and sausage, respectively. Furthermore, the examined sausage samples are containing the highest concentration of tyramine that the average level was 12.97 ± 0.89 mg/Kg; followed by kofta samples (9.36±0.73 mg/Kg); then beef burger samples (5.81 ± 0.45 mg/kg). Only 14.4% of the examined meat product samples (10% of beef burger, 13.33% of kofta, and 20% of sausage samples) were unaccepted and exceeded the permissible limits of tyramine (20 mg/Kg) according to EOS, 2010.

Further results in table (3) showed the highest concentration recorded for putrescine (mg/Kg) was in the examined sausage (7.88 ± 0.51 mg/Kg); followed by kofta (6.21 ± 0.37mg/Kg), then beef burgers samples (3.95 ± 0.29 mg/Kg). While putrescine prevalence was 30% in the examined beef burgers, 40% kofta, and 46.67% in sausage samples. The accepted samples were 93.3% of the examined meat product samples (100% of beef burgers, 93.33% of kofta, and 86.67% of sausage samples).

Moreover, the recorded results in table (4) revealed the prevalence of cadaverine levels that were 26.67%, 33.33%, and 36.67% in beef burgers, kofta, and sausage, respectively. The highest level of cadaverine was 5.38 ± 0.40 mg/Kg in sausage; followed by 3.91 ± 0.26 mg/Kg in kofta; then 2.43 ± 0.18 mg/Kg in beef burgers. All samples of beef burger and kofta were accepted and it was only one sample (1.11%) of the sausage was unaccepted according to EOS (2010).

4. DISCUSSION

The most common biogenic amines that occurred in the examined meat product samples was histamine which formed from decarboxylation of histidine essential amino acid (Triki et al., 2018) that present in meat, followed by tyramine, putrescine, and cadaverine.

Accordingly, the collected frozen sausage samples were containing the highest levels of 4 biogenic amines (histamine, tyramine, putrescine, and cadaverine) followed by kofta, then beef burgers. It may be related to the selection of bad quality raw materials or the use of starter cultures during the manufacturing (Roselino et al., 2020) of sausage which may affect biogenic amines contents in the final products.

Furthermore, the presence of other conditions that enhance the microbial load and decarboxylase activity during the processing such as the unfavorable temperatures during processing, the variation of the manufacturing process, pH, insufficient handling and hygienic conditions, additives, refrigeration, packaging, processing time, and the shelf life and storage conditions during the period stayed in stores which influenced the formation of biogenic amines (Algahtani et al., 2020).

According to obtained results of histamine recorded for the examined meat products, they relatively agree to some extent with those obtained by El-Shewey et al. (2003) and Hefny (2014) who recorded that the histamine levels in minced meat samples were 11.6 mg/Kg, and 12.8 mg/Kg, respectively. It was lower than Rekka (2002), Erkmen and Bozkurt (2004), Hassan (2004), El-Mossalami et al. (2011), Lu et al. (2010), EFSA (2011), Papavergou (2011), Abd El-Wahab (2016), Ekici and Omer (2018) and Morgan (2020) who recorded that the mean value of histamine was 73.6 ± 15.6 mg/Kg, while the lowest results of histamine levels were recorded Anastasio et al. (2010), Mokhtar et al. (2012), El-sheikh (2014) and Algahtani et al. (2020) who recorded that the mean value of histamine is 0.63±0.46 mg/Kg.

Regarding the documented results of tyramine for the examined meat products, they relatively agree to some extent with those recorded by Mokhtar et al. (2012) where the tyramine levels in sausage samples were ranged from 13.25 mg/Kg to 14.9 mg/Kg. Accordingly, the obtained levels of tyramine in the examined meat product samples were lower than Rekka (2002), Gençcelep et al. (2008), Anastasio et al. (2010), El-Mossalami et al. (2011), Lu et al. (2010), EFSA (2011), Papavergou (2011), Elsisi et al. (2016), and Ekici and Omer (2018) who recorded that the tyramine mean values were ranged from 53.50±17.65 to 273.91±33.8 mg/Kg; the lowest results of tyramine levels were recorded El-sheikh (2014) and Algahtani et al. (2020) who haven’t detected tyramine in the examined sausage samples.

Concerning the results recorded in the examined meat product samples, it was nearly like that detected by Ekici and Omer (2018) which reported that putrescine was ranged from 1.008±1.65 to 24.602±5.71 mg/Kg in sausage. Accurately, lower results were recorded by Erkmen and Bozkurt (2004), Gençcelep et al. (2008), Anastacio et al. (2010), Lu et al. (2010), EFSA (2011), Papavergou (2011), and El-sheikh (2014) who recorded that the mean values of putrescine were 15.7±14.73mg/Kg in sausage samples, but our putrescine levels were higher than those recorded by Mokhtar et al.(2012) and Algahtani et al. (2020) which was 1.18± 0.36 mg/Kg in sausage samples. Accurately, the achieved results of cadaverine recorded for the examined meat products were lower than Gençcelep et al. (2008), Anastacio et al. (2010), Lu et al. (2010), EFSA (2011), Papavergou (2011), El-sheikh (2014), and Ekici and Omer (2018) reported the mean value of cadaverine was ranged from 23.8±4.98 to 681.2±113.6 mg/Kg. However, the lowest level of cadaverine was recorded by Mokhtar et al. (2020) which was 5.38 ± 0.40 mg/Kg in sausage.
2018a. Detection of common
biogenic amines in fermented
sauces consumed in Turkish fermented sausages

Abdel-Hakeim, Y. A. 2011. The effect of some toxic
biogenic amines on the quality of some meat products
with a trial to reduce its levels. Assiut Vet. Med. J., 57:
26–46.

2003. Histamine occurrence in some processed canned food.

M. 2016. Biogenic amines as serious residues in street

8. Erkmen, O. and Bozkurt, H. 2004. Effects of
temperature, humidity and additives on the formation of
biogenic amines in sucuk during ripening and storage.

9. European Food Safety Authority ”EFSA” 2011. Panel on
biological hazards: Scientific opinion on risk based
control of biogenic amine formation in fermented foods.

2003.The solution for data analysis and presentation.
2nd Ed., Abacus Lanscripts, Inc., Berkeley, USA.

11. Genccelep, H., Kaban, G., Aksu, M. I., Oz, F. and Kaya,
Food Cont., 19: 868-872.

Med., Assiut Univ., Egypt.

Med., Zazagiz Univ., Egypt.

14. Krause, I., Bockhardt, A., Neckerman, H., Henle, T. and
Klostermeyer, H. 1995. Simultaneous determination of
amino acids and biogenic amines by reversed-phase
high performance liquid chromatography of the dabacyst

15. Ladero, V., Calles, M., Fernández, M. and Alvarez, M.
A. 2010. Toxicological effects of dietary biogenic

16. Lu, S., Xu, X., Shu, R., Zhou, G., Meng, Y., Sun, Y.,
amines and factors influencing their formation in
372.

17. Mokhtar, S., Mustafa, G., Taha, R. and Eldieep, G. S. S.
2012. Effect of different starter cultures on the biogenic
amines production as a critical control point in fresh
527-535.

18. Morot, S., Smela, D., Populin, T. and Conte, L. S.
2005. A survey on free biogenic amine content of fresh

and its impact on consumer health. M. V. Sc. Thesis

20. Naima, A., Flint, S., Fletcher, G. C., Bremer, P. J. and
histamine poisoning with diamine oxidase. J. Food Proc.

fermented sausages produced and sold in Greece.11th
International congress on engineering and food

22. Pinho, O., Ferreira, I., Mendes, E., Oliveira, B. and
Ferreira, M. 2001. Effect of temperature on evolution of
al. (2012) and Algahtani et al. (2020) were 2.1 mg/Kg
in sausage samples.

Hence, biogenic amines concentrations can be
considered as chemical indicators for meat spoiling as
high contents BAs significantly indicate low-quality
raw materials, poor handling, and poor hygienic
conditions during processing Ekici and Omer (2018a),
and consuming food with high amounts of histamine,
putrescine, cadaverine and/or tyramine can have toxic
effects and become one of the most important food
safety issues as in case of histamine poisoning which
causes skin rashes, vomiting and fever, increased
blood pressure and cardiac rates, migraine, diarrhea
and vomiting, skin rashes and inflammation and may
lead to death in severe toxic (Suzzi and Torriani,
2015) especially when associated with putrescine and
cadaverine. Moreover, tyramine, cadaverine, and
putrescine when exposed to high temperatures,
formed the secondary amines which combined with
nitrates, consequently forming nitrosamine that
believed to be one of the main carcinogenic reasons
Tofalo et al. (2016). Thus, consumers’ safety needs to
manufacture histamine free-food and therefore
prevent histamine food poisoning Naila et al. (2015)

5. CONCLUSION

Accordingly, the sausage samples were containing the
highest levels of biogenic amines which indicated low-quality
raw materials, poor hygienic conditions during manufacturing. The consumption of such
products may cause foodborne toxicity caused by
histamine and/or tyramine particularly when they are
associated with cadaverine and putrescine that
enhance the toxic effect of tyramine and histamine
causing serious threatening health hazards for
consumers. Additionally, consumption of meat
products containing putrescine and cadaverine is such
a great problem as these biogenic amines are precursors for nitrosamines formation in combination with
nitrate and nitrite salts which are already used
during meat production as curing substances.

6. REFERENCES

1. Abd El-Wahab, Y. A. F. 2016. Effect of some processing
on biogenic amines in beef burger. M. V. Sc. Thesis

2. Algahtani, F. D., Morshdy, A., Hussein, M. A.,
Abouellieh, E. S., Adeboye, A., Valentine, A. and
Elabassy, M. T. 2020. Biogenic amines and aflatoxins in
Some imported meat products: Incidence, occurrence,

3. Anastasio, A., Drasci, R., Pepe, T., Mercogliano, R.,
Development of biogenic amines during the ripening of

4. Broadway, K. H. 2010. The vascular effects of trace
amines and amphetamines. Pharmacol. Therap., 125:
363-375.

5. De Mey, E., De Klerck, K., De Maere, H., Dewulf, L.,
Derdelinckx, G. Peeters, M.C., Fraye, I., Vander
Heyden, Y., Paelinck, H. 2014. The occurrence of N-
 nitrosamines, residual nitrile and biogenic amines in
commercial dry fermented sausages and evaluation of

6. Egyptian Organization for Standardization “EOS”
2010. Maximum levels for certain contaminants in
foodstuffs. No 7136/2010