Wounds healing activities of topical chitosan/ Zinc oxide nanocomposite membrane and local insulin injection in diabetic rats through activation of growth factors and suppression of matrix metalloproteinase expressions

Samy A. Hussein1, Omayma A. R. AboZaid1, Aziza Amin2, Gamal Abdelaziz3, Sameh A. Hassan1
1Department of Biochemistry, Faculty of Veterinary Medicine, Benha University, Egypt.
2Department of Pathology, Faculty of Veterinary Medicine, Benha University, Egypt.
3Labeled Compounds Department, Hot Labs Center, Egyptian Atomic Energy Authority, Cairo, Egypt.

ARTICLE INFO

ABSTRACT

Diabetes mellitus causes impaired wound healing. In this study, the potential wound healing activities of topical chitosan/ Zinc oxide nanocomposite membrane and local insulin injection in diabetic rats were evaluated. Diabetes was induced by a single IP injection of Streptozotocin (STZ) at a dose of 50mg/kg b.wt. Forty-eight male rats were divided into Six groups. Group I: control wounded, non-treated, non-diabetic rats, Group II: wounded diabetic non-treated, Group III: Normal wounded rats treated with chitosan/ Zinc oxide nanocomposite membrane, Group IV: Diabetic wounded treated with chitosan/ Zinc oxide nanocomposite membrane rats, Group V: wounded diabetic rats treated with local insulin injection, Group VI: Wounded diabetic rats treated with chitosan/ Zinc oxide nanocomposite membrane and local insulin injection. After 14 days of wound treatment, rats were euthanized and the skin tissue was collected for (EGF), (PDGF), (MMP9) and miRNA 21 gene expression analysis. A significant down-regulation of EGF, PDGF and miRNA 21 with up-regulation in MMP 9 were observed in diabetic non treated wounds as compared with control wounded. Meanwhile, a significant increase of EGF, PDGF and miRNA 21 with decrease in MMP 9 gene expression was observed in insulin, Chitosan/ZnO membrane treatment alone or in combination in wounded diabetic rats. Conversely, MMP9 was significantly down regulated after different treatments. The finding indicated that topical Chitosan/ZnO nanocomposite membrane and insulin injection exhibited a great effect on the acceleration of diabetic wound healing via increasing pro-angiogenic effect, re-epithelialization, and remodeling of ECM.

1. INTRODUCTION

Diabetic wounds (DWs) are extra complex and continual, that have a considerable long-status effect at the morbidity, mortality, and satisfactory of patient’s lives (Sanapalli et al., 2021). However, the risk to do managed experimentation on the nature and remedy of DWs is limited. In addition, there may be a colossal inconstancy in the well-known of care among organizations and clinicians, making it frequently hard to look at treatments or effects (Eming et al., 2014). In diabetic wounds, fibrin cuffs encircle tiny blood vessels, which prevents the granulation of new blood vessels, and tissue. In general, inflammatory infiltrates should disappear after removing dead tissue and microorganisms, whereas it persists chronically in diabetes wounds with a distinct neutrophil phenotypic profile. (Martin and Nunan, 2015).

In both humans and animals, wound healing is a crucial yet challenging process, containing a complicated process run under the control of overlapping but sequential phases, such as phases of hemostasis/inflammation, proliferation, and remodeling (Lindley et al., 2016).

Chitosan is an entirely natural polysaccharide, nontoxic, and possesses the necessary compatibility with human tissues and blood. Since chitosan possesses unique biological activity that encourages human cell proliferation and tissue regeneration in addition to having potent antibacterial, hemostatic, and analgesic properties, it is suitable as a material for bandages and can hasten the healing of wounds. Studies on chitosan wound dressings have been conducted and are still ongoing today. (Wang et al., 2020).

In an animal model, zinc oxide nanoparticles have the ability to cure a variety of wound types. Much research has been done to support its epithelialization-stimulating effect on damaged skin. (Khorasani et al., 2019).

The impact of insulin on increasing the rate of wound healing has been found in different animal models, and in different wound types, such as diabetic and non-diabetic, burn wounds, excision wounds, fractures, and cutaneous ulcersations (Liu et al., 2004; Zhang et al., 2007). Moreover, insulin quickens wound recovery by regulating multiple cellular functions in multiple aspects of the healing process (Dhall et al., 2015).

The present study aims to estimate the potential wound healing effect of chitosan/ZnO membrane and insulin injection on growth factors such as EGF and PDGF in addition to MMP 9 and miRNA 21 gene expression in an experimental model of the diabetic wound in rats and histopathological evaluation.

* Corresponding author: sameh.abdelhalidy4483@gmail.com
2. MATERIAL AND METHODS

2.1. Experimental Animals:
Forty-eight male Wistar albino rats of two months weight between 180-200g. Rats were housed in separated metal cages and kept at constant environmental and nutritional conditions throughout the period of experiment. The rats were fed on constant ration and fresh, clean drinking water was supplied ad-libitum. All rats were acclimatized for minimum period of 15 days prior to the beginning of study. Experiment was conducted according to the guide for care of laboratory animals approved by the ethical animal committee of Benha university (Approval no. BUFVTM 02-8-21).

2.2. Chemicals and antioxidant agents:
Streptozotocin (STZ) was bought from (Sigma Chemical Co. U.S.A.) and used to induce hyperglycemia by single intraperitoneal (i.p) injection at a dose of 50 mg /kg body wt. (Ramanathan et al., 1999).

Insulin:
Long performing insulin was bought from (Lantus Solostar, Sanofi-Aventis, Germany). It is subcutaneously injected at a dose of (2 U/rat per day) (Michael et al., 2012).

Chitosan (CS): was obtained from (Sigma-Aldrich, Chemical Company).
Zinc oxide nanoparticles (nZnO): were acquired from (Sigma-Aldrich).
Polyvinyl cofoh (PVA): was purchased from (Loba, chemie).

2.3. Membrane Preparation:
Preparation of PVA/CS and PVA/CS/ZnO composite membranes:
2% of the chitosan solution was prepared by dissolving 1g of chitosan solution in 1% acetic acid (v/v). PVA solution became organized by dissolving 5 gm of PVA powder in 100 cc of distilled water. 20 ml mixture solution of polymer changed into combined to put together the ratio of 1:3 and 1:4 of PVA/CS mixture homogenous polymer solution. Under stirring, 100 mg of ZnO nano-powder was dispersed in blend solution. The aggregate changed into sonicated for 30 min after magnetic stirring and the resulting solution was cast onto glass plates and the obvious membranes were received after solvent evaporating slowly in air at room temperature. and coded in accordance to composition as the subsequent PVA/CS, PVA/CS/ZnO 1:3:1 and PVA/CS/ZnO 1:4:1 (Omer et al., 2021).

2.4. Induction of diabetes:
Experimental diabetes in male rats was induced by a single intraperitoneal (i.p.) injection of the STZ at a dose of 50 mg /kg body wt. STZ was dissolved in a buffer of citrate, pH 4.5. After STZ injection the glucose solution (5%) w/v was provided to the animals in single day to keep away from hypoglycemia which is probably induced by means of STZ. Hyperglycemia turned into confirmed 48 h after STZ injection by monitoring the blood glucose using ACCU-CHEK sensor glucometer. Diabetic rats were diagnosed with glucose levels higher than 250 mg/dL (Ramanathan et al., 1999).

2.5. Experimental design:
The rats were randomly divided into six groups of eight rats each, kept in separated cages for every group, and categorized as following:
Group II (Diabetic wound non treated): wounded, non-treated, diabetic rats.
Group III (Normal wound treated with chitosan/ ZnO nanocomposite membrane): wounded, non-diabetic rats treated with the topical application of chitosan/ ZnO nanocomposite membrane, the wounded area was covered with membrane and membrane was replaced with fresh one at 3.5, 7, 10,12 and 14 days.
Group IV (Diabetic wound treated with chitosan/ ZnO nanocomposite membrane): wounded, diabetic rats with topical application of chitosan/ ZnO nanocomposite membrane.
Group V (Diabetic wound treated with local insulin): wounded, diabetic rats treated with local insulin injected subcutaneously (2U/rat per day) for 14 days.
Group VI (Diabetic wound treated with local insulin and chitosan/ ZnO nanocomposite membrane): wounded, diabetic rats treated with topical application of chitosan/ ZnO nanocomposite membrane and local insulin injection.

2.6. Excisional skin wound Induction:
Following a week of initiating diabetes, every rats back had full-thickness excisional skin wound. Thiotenal sodium (40 mg/kg/rat) (Gopal et al., 2014) was used to make the rats unconscious and Hair on the back was removed. A typical wound with a diameter of 6 mm for each rat, was created using a surgical marker pen. Next, using a sharp scalpel blade to reach the muscle layer, full-thickness incisions were created. (João DeMasi et al.,2016). After the surgery, each rat was housed individually. Rats were observed twice daily to ensure that all the membranes were on the wounds (Colobatiu et al., 2019).

2.7. Sampling:
Skin Tissue samples: Pentobarbital overdose injections intraperitoneally were used to put the animals to sleep after 14 days of wound treatment (Zhou et al., 2017). Skin specimens were obtained from the widest area of the wound tissue with the surrounding normal skin margin. Skin tissues were kept in liquid nitrogen and stored at -80°C till RNA extraction for determination of the following gene expression: (EGF), (PDGF), (MMP9) and (miRNA 21).

2.8. Histopathological examination:
The skin tissue specimens were removed and fixed in 10% formalin solution after proper fixation, 5 μm tissue paraffin sections were routinely prepared and stained with hematoxylin and eosin (H&E) according to Bancroft and Layton (2019).

2.9. Analysis:
Molecular analysis:
Quantitative RT-PCR used for determination of EGF, PDGF, MMP9, and miRNA 21. In skin tissue according to the method described by Thermo Scientific, Fermentas, # K0731. β-actin was used as load control. RNA Extraction kit according to manufacturer’s instructions. With each cDNA, sample was reverse transcribed using RevertAid TM First Strand CDNA synthesis kit (#EPO451, Thermo Scientific, Fermentas, USA). Then, real-time quantitative PCR amplification was performed on Faststart Universal SYBR Green Master (Roche, GER). The target gene was normalized with β-actin by the 2ΔΔCt method (Livak and Schmittgen, 2001).

2.10. Statistical analysis:
Comparisons between the groups were performed by one-way analysis of variance (ANOVA), using SPSS Version 20. The data are presented as the means ± SE. At p ≤ 0.05, the differences were considered significant.
3. RESULTS

Molecular analysis:

Effect of treatment with insulin and chitosan/ZnO nanocomposite membrane on EGF, PDGF, MMP 9 and miRNA 21 gene expression in diabetic wound rats are presented in table (2) and figures (1, 2, 3, and 4).

A significant decrease of EGF and PDGF gene expression were observed in skin tissue of diabetic wounds compared with normal wound. However, treatment with insulin (group V) and CS/ZnO membrane with insulin injection (group VI) to diabetic wound in rats exhibited a significant increase in EGF and PDGF gene expressions as compared with diabetic wound non-treated group (group II) With highest decrease in (group VI) followed by (group V) and finally (group IV). Also, marked increases in EGF and PDGF gene expressions were observed in CS/ZnO membrane treated normal wound rats (group III) comparing with normal non treated group (group I).

Markedly increase of MMP 9 and decrease in miRNA 21 gene expression were observed in skin tissue of diabetic wounds compared with normal wound. However, treatment with insulin (group V) and CS/ZnO membrane with insulin injection (group VI) to diabetic wound in rats showed a significant decrease in MMP 9 with highest decrease in (group VI) followed by (group V) and finally (group IV). Additionally, treatment with insulin (group V) and CS/ZnO membrane with insulin injection (group VI) to diabetic wound in rats exhibited a significant increase in miRNA 21 gene expressions compared with diabetic wound non-treated group (group II) with highest increase in (group VI) followed by (group V) and finally (group IV). Also, a significant decrease in MMP 9 and increase in miRNA 21 gene expressions were observed in CS/ZnO membrane treated normal wound rats (group III) comparing with normal non treated group (group I).

Table 1 Forward and reverse primers sequence for primers in qPCR.

<table>
<thead>
<tr>
<th>Gene</th>
<th>Forward primer (5′ ----> 3′)</th>
<th>Reverse primer (5′ ----> 3′)</th>
</tr>
</thead>
<tbody>
<tr>
<td>EGF</td>
<td>CAGATGACAGCCGCAGAGCTT</td>
<td>GTTCTGCTTCTATGTTGGTG</td>
</tr>
<tr>
<td>PDGF</td>
<td>TGGACGCAAGAGACAGCG</td>
<td>TTGACGATTTTTCGCTG</td>
</tr>
<tr>
<td>MMP9</td>
<td>AAGAGTCCCAAGATCTG</td>
<td>AAGCAAGTGTCGCA</td>
</tr>
<tr>
<td>miRNA 21</td>
<td>TTAGGCTGATGCAGTGGGAG</td>
<td>GAAGAGGCGGCGGAAAGAA</td>
</tr>
<tr>
<td>U6</td>
<td>TGACGATCGAGCTTCTATGT</td>
<td>CGAGGGCTGAGAATG</td>
</tr>
</tbody>
</table>

Table 2 EGF, PDGF, MMP 9 and miRNA 21 gene expressions in control and different experimental groups

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Animals Groups</th>
<th>EGF</th>
<th>PDGF</th>
<th>MMP9</th>
<th>miRNA 21</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>SE</td>
<td>SE</td>
<td>SE</td>
<td>SE</td>
</tr>
<tr>
<td>Control wounded, non-treated, non-diabetic rats (GI)</td>
<td>1.00 ± 0.01a</td>
<td>1.00 ± 0.01a</td>
<td>1.00 ± 0.01a</td>
<td>1.00 ± 0.01a</td>
<td></td>
</tr>
<tr>
<td>Diabetic wounded, non-treated rats (GIB)</td>
<td>0.60 ± 0.04b</td>
<td>0.34 ± 0.05c</td>
<td>1.43 ± 0.05d</td>
<td>0.40 ± 0.05e</td>
<td></td>
</tr>
<tr>
<td>Control wounded, non-diabetic rats treated with membrane (EEEE)</td>
<td>6.36 ± 0.54a</td>
<td>9.58 ± 0.42a</td>
<td>0.21 ± 0.02a</td>
<td>7.30 ± 0.36a</td>
<td></td>
</tr>
<tr>
<td>Wounded, diabetic rats with topical application of membrane (EE)</td>
<td>1.67 ± 0.02a</td>
<td>2.64 ± 0.12c</td>
<td>0.64 ± 0.01c</td>
<td>1.11 ± 0.08a</td>
<td></td>
</tr>
<tr>
<td>Wounded, diabetic rats treated with local insulin injected (GEE)</td>
<td>2.55 ± 0.14a</td>
<td>5.61 ± 0.23a</td>
<td>0.35 ± 0.02a</td>
<td>2.09 ± 0.13a</td>
<td></td>
</tr>
<tr>
<td>Wounded, diabetic rats treated membrane and local insulin injection (EVI)</td>
<td>4.23 ± 0.27a</td>
<td>5.74 ± 0.13a</td>
<td>0.26 ± 0.02a</td>
<td>5.66 ± 0.28a</td>
<td></td>
</tr>
</tbody>
</table>

Fig. (1): Effect of insulin injection and CS/ZnO nanocomposite membrane on EGF gene expression in experimental model of diabetic wound in rats.

Fig. (2): Effect of insulin injection and CS/ZnO nanocomposite membrane on PDGF gene expression in experimental model of diabetic wound in rats.

Fig. (3): Effect of insulin injection and CS/ZnO nanocomposite membrane on MMP 9 gene expression in experimental model of diabetic wound in rats.

Fig. (4): Effect of insulin injection and CS/ZnO nanocomposite membrane on miRNA 21 gene expression in experimental model of diabetic wound in rats.
Histopathological Findings:
On skin tissue of wound sample during day 14 wound healing was assessed, samples taken from both non-diabetic and diabetic as well as treated rats. After 14 days of the beginning of treatment, the results of the microscopic examination of treatment indicated its positive effect on the process of wound healing with variable degrees.
Interestingly, no leukocytic cellular infiltrations were detected in the healing of wounds in non-diabetic rats as well as non-vascular granulation tissue that composed mainly from fibroblasts was noticed in some examined cases with complete re-epithelization was also observed among this group (figure 5a-c). Additionally, comparing with other groups the cell density was higher throughout the epidermal layer. Meanwhile, these wound healing process of diabetic rats showed mild leukocytic cellular infiltrations as well as complete re-epithelization (figure 5d-e). Moreover, the cell density was less throughout the epidermal layer compared with the normal wound. However, the healing of non-diabetic wounds treated with membrane exhibit an intact epidermal layer that covers typical non-vascular granulation tissue in all investigated cases with the absence of inflammatory cellular infiltration (figure 5f-h). In the meantime, in diabetic wounds treated with membrane, an intact epidermal layer with less cell density in comparison to the non-diabetic wound was seen.
Additionally, mild vascular granulation tissue with leukocytic cellular infiltrations was also observed among this group (figure 6a-c). The histopathological evaluation of diabetic wounds treated with local insulin revealed increased granulation tissue deposition containing greater numbers of larger vessels as the number and luminal size of the blood vessels was greater than in the other investigated groups. Furthermore, the epidermal layer of skin obtained from the diabetic rats-treated with local insulin was thicker and had a greater basal cell density (figure 6e-f), consequently, in this group, the wound healing maturation process was more apparent in comparison to the other treated groups. In the meantime, in the experimental group, diabetic wound treated with both membrane and local insulin, its microscopic findings revealed a thin layer of epithelium covered a thin layer of mildly vascular granulation tissue (figure 6g-i).

4. DISCUSSION
Hemostasis, inflammation, multiplication, and remodeling are the four steps of the wound healing process that help to restore the integrity of the skin. (Reinke and Sorg 2012).

The results of the present work showed in table (1) and figure (1,2) revealed that, notably increase in wound tissue EGF and PDGF activities in CS/ZnO membrane treated group compared to the normal group, and markedly, down-regulation in non-treated diabetic rats compared to the normal group. In line with our finding, Ueno et al., 2001 proven that chitosan has demonstrated cell proliferative properties that are essential for effective healing in addition to its antibacterial and antifungal properties. It is known to stimulate macrophages and polymorphonuclear leucocytes for phagocytosis and the generation of IL-1, TGF-, and PDGF. Activation of fibroblasts is strongly associated with the degree of de-acetylation, and chitosan also promotes fibroblast proliferation (Minagawa et al., 2007).

Parallel to Feng et al. (2021) who declared that, through the stimulation of inflammatory cell development represented by macrophages, fibroblasts and capillaries, chitosan can speed up the healing of skin wounds, Chitosan can encourage the release of cytokines such transforming growth factor-b. (TGF-b), PDGF, and IL-1. TGF-b causes macrophages to flock to injure sites, encouraging fibroblast growth and increasing collagen production. Additionally, Li et al., (2008) implied that, in diabetic wounds, PDGF and its receptors express less, indicating a function in the healing process.

Moreover, EGF accelerates wound epithelialization and lessens scarring by limiting excessive wound contraction (Svensjo et al., 2002).

Similar reports by Okabe et al., (2013) detected that, growth factor (EGF) increased cell proliferation and differentiation and growth by binding to (EGFR). initially discovered in nerve growth factors taken from mouse submandibular gland.

EGFR signaling improved the rat of wound epithelialization and triggers keratinocyte migration to the wound (Plenimaki et al., 2001).
Sommeling et al. (2013), confirmed that, at a wound site, EGF can promote the growth of granulation tissue and enhance the quality of wound recovery. Our results suggest that, a treatment with CS/ZnO membrane and insulin injection to diabetic wound in rats show a noticeable increase in EGF and PDGF activities compared with rats treated with CS/ZnO membrane and rats treated with insulin injection only.

The obtained outcomes shown in figure (1) and figure (3.4) revealed that, a markedly up-regulation in wound tissue MMP 9 activities in diabetic non-treated rats compared with the normal control group. Supporting our findings Gooyit et al. (2012) reported that, an increase of active MMP-9 was recorded in diabetic mice with delayed wound closure, which can be harmful to the restoration process. Treatment with chitosan/ZnO membrane to diabetic wounds showed a noticeable improvement in tissue MMP 9 activities compared with diabetic rats treated with insulin injection only and rats treated with CS/ZnO membrane with insulin injection. Similar to Moura et al., (2022) who detected enhanced re-epithelialization and collagen synthesis occurred concurrently with enhanced MMP-9 activity in wounds treated with Ag-ZnO/AgO NPs. The inhibition of this enzyme in mice, helped to highlight the significance of MMP-9, this caused uneven ECM remodeling, reduced collagen synthesis and postponed re-epithelialization (Kyriakides et al., 2009).

In line with our finding, Long et al., (2018) demonstrated that, following skin damage, it was discovered that keratinocytes Mir-21 levels had increased, which occurred at the same time as TGF-β1, a crucial wound-healing facilitator. Furthermore, another player in the regulation of the inflammatory and proliferative stages of wound healing is MiR-21.

Moreover, Yang et al. (2011) revealed that TGF-β1 upregulated miR-21, which became, subsequently necessary for TGF-driven keratinocyte migration. In connection with this, miR-21 has been linked to characteristics of wound healing such as migration of cells, angiogenesis, and re-epithelialization. In light of this, overexpression of miR-21 in a rat model of wound healing considerably increases the rate of healing because, targeting the tumor suppressor phosphatase and tensin homolog (PTEN) activates the AKT/PISK signaling pathway (Xiong et al., 2013). In line with our finding, Baghaie et al. (2017) observed that, knockdown of miR-21 levels had increased, which occurred at the same time as TGF-β1, a crucial wound-healing facilitator. Furthermore, another player in the regulation of the inflammatory and proliferative stages of wound healing is MiR-21. The influence of growth factors On skin wound healing properties of chitosan/ZnO nanocomposite material. Reactive and Functional Polymers 145 - 104369.

