

Prevalence of *eae* A and *qac* E Δ 1 genes in *Escherichia coli* isolated from omphalitis in baby chicks

Ashraf A. Abd El- Tawab¹, Soad A. Nasef², Fatma I. El- Hofy¹ and Ola A. Ibrahim³

¹Bacteriology, Immunology and Mycology Department, Faculty of Veterinary Medicine, Benha University. ²Animal Health Research Institute, Dokki Lab., Giza. ³Animal Health Research Institute, Dakahlia branch.

A B S T R A C T

A total of two hundred diseased Saso chicks with omphalitis were examined (1400 samples) for the isolation of *E. coli* from different organs (liver, caecum, spleen, heart, lung, yolk sac and cloacal swab). Results showed that 64 cases were positive with an incidence of 32%. Fifty isolates (25%) of *E. coli* were recovered from chicks could be sero-grouped in 19 O groups with the most predominant serotype was O_{91} 20% (10 out of 50 isolates), O_{26} 10% (5 strains out of 50) O_{78} 8% (4 strains out of 50), and 7 strains untypable *E. coli* 14%. Among *E. Coli* O groups were found to be resistant to Amoxicillin 93.02% followed by Tetracycline 74.42%, Enrofloxacin 46.51%, Erythromycin 30.32%, Ciprofloxacin 27.91%, Norofloxacin and Streptomycin 20.93% and Gentamycin 6.98%. While they were found to be sensitive for Gentamycin, Streptomycin, Ciprofloxacin, Tetracycline, Erythromycin, Norofloxacin, and Amoxicillin as the following: 88.37%, 46. 51%, 34.89%, 23.26%, 18.60%, 9.30%, 9.30% and 6.98%, respectively. The incidence rate of *eae*A gene of *E. coli* was 15.79%. Quaternnary ammonium compound (*qac*EΔ1) gene also was detected in *E. coli* with incidence rate 63.16%.

Keywords: Omphalitis, E. coli, Virulence gene, Antibiotic resistance, Disinfectant resistant gene

(http://www.bvmj.bu.edu.eg)

(BVMJ-32(1): 184-192, 2017)

1. INTRODUCTION

Omphalitis is an infectious and non- contagious condition of yolk sac accompanied by unhealed navels in chicks. Affected chicks appear normal until a few hours before death (Kahn et al., 2008). Yolk sac infection caused chick mortality during the first week of the post-hatching period (Yassin et al., 2009). Proteus spp., Enterobacter spp., Pseudomonas Klebsiella spp., spp., *Staphylococcus* Streptococcus spp., spp., Clostridium spp., Bacillus cereus and Enterococcus spp. were bacteria that have been isolated from yolk sac infections in chicks in different locations all over the world. Escherichia coli (E. coli) was frequently observed to cause omphalitis (Ulmer Franco, 2011). The occurrence of a specific serotype and its role in disease production depends upon the health status of the birds, climatic conditions, geographical situations and management strategies (Srinivasan et al., 2013). Salehi et al. (2007) conducted a study to determine the presence of virulence genes in 12 isolates of Avian Pathogenic Escherichia coli (APEC) in Iran. All 12 isolates were tested for the presence of *eaeA* gene by multiplex polymerase

chain reaction, 2 isolates possessed *eae* sequence. A certain degree of *association* over time between bacterial resistance to antiseptics and antibiotics has been reported. It has been observed that some bacteria which express increased resistance to antiseptics are generally less susceptible to antibiotics. Outer membrane changes have been believed to be one of the mechanisms responsible for such increased non-specific cross-resistance (Russell, 2000). The qacE gene (including its attenuated variant $qacE\Delta 1$) is widely spread in Gram negative bacteria, mainly in Enterobacteriaceae and Pseudomonas spp. (Chang et al., 2007; Mak et al., 2009; Wang et al., 2008a). Disinfectants including quaternary ammonium compounds (QACs) have been introduced into farm environments. particular concern was that repeated usage of disinfectants may results in the selection and persistence of bacteria with reduced susceptibility not only to the antiseptics but possibly to antibiotics as well (Randall et al., 2004b). Quaternary ammonium compound (QAC) based disinfectants are often used in environments where antibiotics are used (Hegstad et al., 2010).

Antibiotic resistance gene and QAC are together carried on class 1 integrons, increasing concerns that QAC exposure resistance may select for antibiotic resistance by selecting for class 1 integrons (Gaze et al., 2005).

Therefore, the aim of this study was to investigate the prevalence of omphalitis and the predisposing factors associated with the occurrence of yolk sac infection in poultry farm by isolation and identification of *Escherichia coli* associated with yolk sac infection, antimicrobial sensitivity tests and application of Polymerase Chain Reaction for detection of *eae*A and *qac*E Δ 1 genes.

2. MATERIAL AND METHODS

2.1. Samples Collection

A total of 200 chicks (1400 samples) from diseased chickens from one to seven days old of Saso breed were collected from different farms at Dakahlia Governorate were subjected to clinical and postmortem (P.M) examination as well as for isolation and identification of *Escherichia coli* from different organs including liver, caecum, spleen, lungs, heart, yolk sac and cloacal swab. All samples were collected and handled aseptically to prevent cross contamination.

2.2. Bacterial Isolation:

Isolation of *E.coli* was carried out according to *Quinn et al.* (2002).

2.3. Diagnostic E. coli antisera

The isolates were serologically identified according to Kok et al. (1996) by using rapid diagnostic *E.coli* antisera sets (DENKA SEIKEN Co., Japan) for diagnosis of the Enteropathogenic types. Polyvalent and monovalent diagnostic *E.coli* antisera were used for serogrouping of *E.coli* isolates according to somatic (O) and capsular (K) antigen.

2.4. Antibiotic Sensitivity test

The antimicrobial susceptibility testing was done according to Finegold and Martin (1982) using the agar disc diffusion method on Mueller Hinton agar and using 8 antibiotic discs included Amoxicillin 10mcg, Enrofloxacin 5mcg, Tetracycline 30mcg, Gentamycin 10mcg, Erythromycin 15mcg, Ciprofloxacin 5mcg, Streptomycin10mcg and Norfloxacin10mcg from Oxoid (1998). The interpretation of inhibition zones of tested culture was done according to CLSI (2011).

2.5. DNA Extraction

DNA was done according to Simonelli et al. (2009). Oligonucleotide primers were designated according to Integrated DNA Technology and were used for amplification of the Attaching and effacing mechanisms gene (eaeA) and Quaternary ammonium compound *qac*ED1gene. The primers were received in lyophilized form and resuspended in Tris/EDTA (TE) buffer to reach a final concentration of 100 pmol/µl. These primers suspected to amplify specific segment of 248 and 362 bp.as shown in table (1). The DNA extraction for the selected isolates was performed using ABIO pure Genomic DNA extraction kit. The Oligonucleotide Primers which provided from Metabion (Germany) are listed in table (1). The primers were utilized in a 25 µl reaction containing 12.5 µl of Emerald Amp Max PCR Master Mix (Takara, Japan), 1 µl of each primer of 20 pmol concentrations, 4.5 µl of water, and 6 µl of template. The reaction was performed in a Biometra thermal cycler. The products of PCR were separated by electrophoresis on 1-1.5% agarose gel (ABgene) in 1x TBE buffer at room temperature. For gel analysis, $15 \mu l$ of the products was loaded in each gel slot. A 100 bp DNA Ladder (Qiagen, USA) was used to determine the fragment sizes. The gel was photographed by a gel documentation system and the data was analyzed through computer software.

3. RESULTS

Omphalitis was detected in chicks from one day to seven days as following; day 1 (20%), day 2 (26.67%), day 3 (37.5%), day4(30%), day 5(51.4%), day 6 (26.67%) and day 7 (15%). Table (2). Internal organs from each chick were bacteriologically examined to reveal the incidence of E. coli in different organs. E. coli was recovered from different internal organs as the following ,14% from liver, 10% from caecum, 11% from spleen, 10% from heart, 9% from lung, 11.5% from yolk and 8% from cloacal swab. Table (3). The serological examination of 50 E. coli isolates resulted in detection of different serogroups including O₉₁, O₂₆, O₇₈, O₁₂₅, O₁₅₁, O₅₅, O₈₆, O₁₂₈, O1, O27, O158, O166, O28, O103, O142, O144, O159, O6, O02, while 7 strains were untyped. Table (4). Sensitivity test was done using 8 antibiotics. E. coli O groups was found to be resistant to Amoxicillin antibiotic (93.02%) followed by Tetracycline 74.42%, Enrofloxacin 46.51%, Erythromycin 30.32%, Ciprofloxacin 27.91%, Norofloxacin and Streptomycin 20.93% and Gentamycin 6.98%. While they were found to be sensitive for Gentamycin, Streptomycin, Ciprofloxacin, Tetracycline, Erythromycin, Norofloxacin,

Genes	Primer Sequences (5'-3')	Size (bp)
eaeA	ATGCTTAGTGCTGGTTTAGG GCCTTCATCATTTCGCTTTC	248
QacED1	TAA GCC CTA CAC AAA TTG GGA GAT AT GCC TCC GCA GCG ACT TCC ACG	362

Table (1):Oligonucleotide primers for virulence and resistant genes

Table (2): Incidence of E. coli infection in chicks from one day to seven days

Age	Examined chicks	Positive	Incidence	Isolated bacteria		
Day 1	15	3	20%		+ve case	%
Day 2	45	12	26.67%			
Day 3	40	15	37.5%	E. coli		
Day 4	30	9	30%			
Day 5	35	18	51.4%		50/200	25
Day 6	15	4	26.67%			
Day 7	20	3	15%			
Total	200	64	32%			

-11 (0)		0 - 11 0	• . •
Toble (1)	Voto ot rocovor	u ot L' coli trom	intornal argang
	I. NALE OF IECOVER	v of <i>r. coll</i> hom	internal organs

Examined organs in 200 chicks	Number of positive	Percentage of positive %
Liver	28	14
Caecum	20	10
Spleen	22	11
Heart	20	10
Lung	18	9
Yolk	23	11.5
Cloacal swab	16	8

Table(4): E. coli serogroupes recovered from bacteriologically examined chicks

The infected E. coli serotype	Number of positive chicks	Percentage of positive %
O ₉₁ K .	10/50	20
O ₁₂₅ K .	3/50	6
O ₂₆ K ₆₀	5/50	10
O ₁₅₁ K .	1/50	2
O55 K 59	1/50	2
O ₈₆ K ₆₄	3/50	6
O ₁₂₈ K -	2/50	4
O ₁ K .	3/50	6
O ₂₇ K .	1/50	2
O ₁₅₈ K .	1/50	2
O ₁₆₆ K .	2/50	4
O ₂₈ K -	1/50	2
O ₁₀₃ K -	1/50	2
O ₁₄₂ K 86	1/50	2
O ₁₄₄ K .	1/50	2
O ₁₅₉ K .	1/50	2
O ₀₆ K .	1/50	2
O ₇₈ K .	4/50	8
O ₀₂ K .	1/50	2
Untyped	7/50	14
Total	50	100

Table (5:) Sensitivity of E. coli serotypes to antimicrobial agents

Antibiotics		E.coli	
Ciprofloxacin (CF)	R 12(27.91%)	I 16(37.21%)	S 15(34.88%)
Enrofloxacin (ENR)	R 20(46.51%)	I 19(44.19%)	S 4(9.3%)
Norfloxacin (NOR)	R 9 (20.93%)	I 30(69.77%)	S 4(9.3%)
Tetracycline(T)	R 32(74.42%)	I 1(2.32%)	S 10(23.26%)
Erythromycin (E)	R 13(30.23%)	I 22(51.16%)	S 8(18.61%)
Gentamycin (G)	R 3(6.98%)	I 2(4.65%)	S 38(88.37%)
Streptomycin (S)	R 9(20.93%)	I 14(32.56%)	S 20(46.51%)
Amoxicillin (AM)	R 40(93.02%)	I 0	S 3(6.98%)

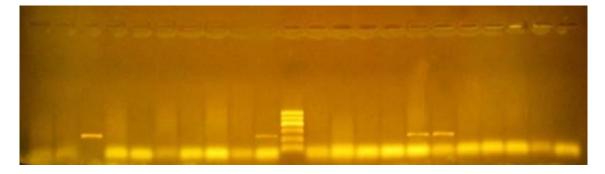


Figure (1): *eae*A gene of *Escherichia coli* Amplification of 248 bp was observed in the extracted DNA of O₂₈, O₁₀₃ and O₁₂₈ in lane number 5, 6 and 17 respectively. No amplification in lane number 1,2,3, 4, 7,8, 9,10,11,12, 13,14,15,16,18 and 19, respectively

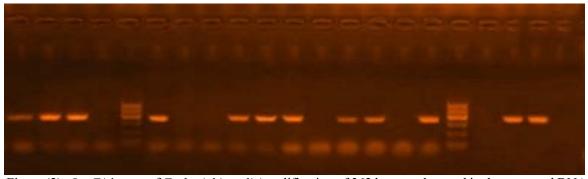


Figure (2): $QacE\Delta 1$ gene of *Escherichia coli* Amplification of 362 bp was observed in the extracted DNA of O₂₆, O₉₁, O₂₈, O₁₅₁, O₅₅, O₈₆, O₁₂₅, O₁₆₆, O₁, O₁₂₈, O₇₈ and O₂ (in lane number2, 3, 5, 7, 8, 10, 11, 12, 15, 17, 18 and 19 respectively). No amplification in in lane number1, 4, 6, 9, 13, 14 and 16 respectively

Enrofloxacin, and Amoxicillin as the following: 88.37%, 46. 51%, 34.89%, 23.26%, 18.60%, 9.30%, 9.30% and 6.98%, respectively (Table 5). PCR was used for detection of *eae*A gene that play an important role in virulence of *Escherichia coli*. Figure (1). The gene was present in 3 out of 19 isolates. Also detection of *qac*E Δ 1gene that play a role in resistance of *Escherichia coli* to disinfectant (Figure 2). The gene was present in 12 out of 19 isolate.

4. DISCUSSION

Yolk sac infection (YSI) is a major cause of mortality in broilers during the first week of life (Bains, 1979; Coutts, 1981; Jordan, 1996). As shown in table (2), out of 200 chicks (1400 samples) examined, *E. coli* 50 (25%). These results agreed with that of Saif et al. (2008), who reported that, Escherichia coli (*E. coli*) is the most common contaminant of yolk sacs in chickens and about 70% of chicks with omphalitis had this bacterium in their yolk sacs, also agreed with Abadi et al. (2013). On the other hand, higher incidence of *E. coli* 83.9% was mentioned by Iqbal et al. (2006).

The results were different by Ahmed (2016) who examined 216 yolk sac and revealed that 152 of them were infected with *E. coli* with an incidence of 70.3%. The gross lesions observed in chicks died of yolk sac infection included unabsorbed/ retained yolk sac and edematous yolk which was also reported by different workers (Ahmed, 2016; Kawalilak et al., 2010; Suha et al., 2008).

The obtained results of this study revealed that the most *Escherichia coli* isolates obtained from liver of the examined chicks followed by yolk, spleen, caecum, heart, lung and cloacal swab 14%, 11.5%, 11%, 10%, 10%, 9% and 8% respectively and the explanation of these results is due to infection with APEC generally begins as a localized infection of the air sacs commonly referred to as air sacculitis or the air sac disease which in turn may spread to other internal organs resulting in systemic infection (Barnes et al., 1999).

These results were agreed with Sharada et al. (2010) who recovered the highest percent of isolates from cases of hepatitis 44.6%, enteritis 33.8%, and pericarditis 16.9%. The cultural characteristics of E. coli was similar to the findings of other authors (Choudhury et al., 1993; Jakaria et al., 2012; Naurin et al., 2012; Nazir et al., 2004). In this study, 50 out of 200 E.coli isolates recovered from chicks could be serogrouped in 19 O groups with the most predominant serotype was Escherichia coli O₉₁ 20 % (10 out of 50 isolates) of all isolates and these results go hand to hand with the previous studies of Gross (1991); Suwanichkul and Panigrahy (1988); van den Bosch et al. (1993), who reported that serogroup O_{91} was traditionally associated with colibacillosis in poultry. Other serogroups were identified in this investigation as O₂₆10% (5 strains out of 50), O₇₈8% (4 strains out of 50), O₈₆ & O₀₁& O₁₂₅ 6% (3 strains out of 50), O₁₆₆& O₁₂₈ 4% (2 strains out of 50), O₂₇ & O₁₄₂ & O₁₅₈ O₁₅₁& O₀₂ & O₀₆ & O₀₅₅ & O₁₄₄ & O₁₅₉& O₂₈ and O₁₀₃ 2% (1 strains out of 50) and 7 strains untypable E. coli.

Among the serogroup isolated in this study is O_{86} . This serogroup is known to be highly pathogenic for 3-5 day-old chicks Burkhanova, (1970). Besides this, O_{86} and O_{26} groups isolated in this investigation are among the enteropathogenic *E. coli* known to be associated with infant hemorrhagic colitis and bloody diarrhoea (Cravioto et al., 1979). This is suggestive of the possible zoonotic effect of some *E. coli* serogroups associated with dead-in-shell embryos. El-Jakee et al. (2012) isolated O_{06} , O_{26} , O_{27} , O_{86} , O_{111} and O_{128} . *E. coli* O_{27} was previously isolated from cloacal swabs of chickens (Amira et al., 2010). Isolation of *E. coli* $O_{06} \& O_{15} \& O_{25}$ and O_{78} was done from

oviducts of layer hens with salpingitis (Ghanbarpour and Salehi, 2010), *E. coli* O_{44} & O_{125} & O_{26} & O_{78} & O_{157} and O_{06} were isolated previously from chicken and ducks (Heba et al., 2012). The variable frequency of isolation of different serogroups from poultry is probably due to the variation of serogroups over different studies period and locations. However, studying more isolates is needed to establish a correlation between certain E. *coli* serogrups and omphalitis in chicks.

Samah and Ahmed (2013) revealed that, 11 different serotypes of *E. coli* which were identified in Egypt as follows, O ₁₁₄ predominates with 17.86% of the total isolates, O₁₂₅ and O₅₅ with 14.29% each, O₁₁₁ and O₂₆ with 10.71%. However, *E. coli* isolates pathogenic for poultry commonly belong certain serotypes, particularly serotypes O₁, O₂ and O₇₈ and to some extent O₁₅ and O₅₅ (Chart et al., 2000; Gross, 1994), only 4 strains belong to O₁ and O₅₅ in the present study.

As shown in Table (5), E. coli O groups was found to be 93.02% resistant to Amoxicillin antibiotic followed by Tetracycline 74.42%, Enrofloxacin 46.51%, Erythromycin 30.32%, Ciprofloxacin 27.91%, Norofloxacin and Streptomycin 20.93% and Gentamycin 6.98%. While was found to be sensitive for Gentamycin, Ciprofloxacin, Streptomycin, Tetracycline, Erythromycin, Norofloxacin, Enrofloxacin, and Amoxicillin as the following: 88.37%, 46. 51%, 34.89%, 23.26%, 18.60%, 9.30%, 9.30% and 6.98%, respectively. These results were agreed with that of Ahmed (2016) who said that E. coli isolates were highly sensitive to Gentamycin (90%). On the other hand, E. coli strains in this study were highly resistant amoxicillin (93.02%) and that results were agreed with Abd -El-Galil et al. (1993); Ahmed (2016); Hammoudi and Aggad (2008), but in some reports 223 strains of E. coli isolated from fowls were 89% sensitive to amoxicillin (Gyurov, 1985).

The present study showed resistance percentages to Enrofloxacin (46.51%). Almost similar resistance were detected by Aggad et al. (2010); Zakeri and Kashefi (2012) 45% and 60% respectively. The relatively high resistance rate of Tetracycline in the isolated E. coli in this study were (74.42%)may be due to the consequence of widespread and lengthy use of this group of antibiotics as feed additive, for prophylactic purposes and/or diseases treatment (Rahimi, 2013). Bacterial resistance to Tetracycline is plasmid mediated, with a wide variety of genetic determinants (Prescott et al., 2000). This makes it more possible for a susceptible bacterium to acquire resistance factors, as was shown by Tricia et al. (2006). However these results were agreed

with earlier reports of Roy et al. (2006b) and Al-Ghamdi et al. (1999) as high reported resistance to these antibiotics (57.0-100%) in chicken isolates, it disagreed with those of Kolar et al. (2005) who showed less resistant to Tetracycline about 48%.

The results of Antibiotic susceptibility of our study are invariance with some studies and in accordance with others, indicating that antibiotic susceptibility pattern varies with different isolates, time and development of multiple drug resistant *E.coli* as reported by Holmberg et al. (1984) and Sharada et al. (2010). Omphalitis-derived isolates extremely are not included in APEC group because some authors had mentioned that these E. coli isolates are just opportunistic and non- pathogenic agents Rosario et al., (2005). It had been shown that E. coli isolated from breeder farm, hatchery and broiler farms carried the virulence associated genes (Dias da Silviers et al., 2002). In this study, (as in figure 1) the incidence rate (15.79%) of eaeA gene of E.coli detection was recorded, as it was detected by PCR in 3 out of the 19 tested isolates and these results were nearly agreed with Wani et al. (2004) and Kilic et al. (2007) who reported rate about incidence 2.49%and 35.71% respectively and differ from results obtained by Samah and Ahmed (2013) and Suardana et al. (2011) who reported the incidence rate 71.4% and 95% respectively. In this study, the $qac E\Delta 1$ gene was reported in E.coli (63.16%), as it was detected by PCR in 12 out of the 19 tested isolates (as in figure 2). These results were nearly in accordance with Amira (2016) who found the distribution of $qac E\Delta 1$ gene was 93.1%.

The co-resistance of QAC and antibiotics could be achieved by linkage of different resistance mechanisms on the same plasmid, transposon or integrin or any combination of these (Hegstad et al., 2010). The localization of these QAC determinants on different mobile elements, may share in the transfer of resistance to the other bacteria (Gillings et al., 2009a).

5. CONCLUSION

Out of 200 chicks (1400 samples) examined, *E.* coli incidence was 50 (25%). Was found to be highly resistant to Amoxicillin, while was highly sensitive to Gentamycin. Incidence rate of *eaeA* gene was (15.79%), while $qacE\Delta$ 1gene was (63.16%). Chicks should be obtained from hatcheries which adopt strict hygienic measures during the whole hatching process. Moreover, hygienic environment should be provided to the young chicks during brooding and special attention should be paid to the humidity in the brooding house.

6. REFERENCES

- Abadi, A., Ali, M.A., Ashenafi, S., Shahid, N., Haileleul, N., 2013. Yolk Sac Infection (Omphalitis) in Kombolcha Poultry Farm, Ethiopia. American-Eurasian Journal of Scientific Research 8, 10-14.
- Abd –El-Galil, Y., Attia, A., Helmy, S., El-Naeneey, E., Hamouda, A., 1993. Studies on the bacterial causes of quail mortalities. J. Zag. Vet. 21, 547-557.
- Aggad, H., Ammar, Y., Hammoudi, A., Kihal, M., 2010. Antimicrobial Resistance of Escherichia coli Isolated from Chickens with Colibacillosis. Global Veterinaria 4, 303-306.
- Ahmed, I., 2016. Studies on omphalitis in baby chicks. M.V.Sc. Department of poultry diseases. Faculty of Vet. Med. Beni-Suif University.
- Al-Ghamdi, M.S., El-Morsy, F., Al-Mustafa, Z.H., Al-Ramadhan, M., Hanif, M., 1999. Antibiotic resistance of Escherichia coli isolated from poultry workers, patients and chicken in the eastern province of Saudi Arabia. Trop Med Int Health 4, 278-283.
- Amira, F.A., 2016. Molecular characterization of virulence genes in Salmonella spp. Isolated from poultry. Kafrelsheikh University. PhD. Thesis, Faculty of Veterinary Medicine. Department of Bacteriology, Mycology and Immunology.
- Amira, Z.S.A.Z., Khalil, A.S., Elsawy, M.A., Hagag, N.Y., 2010. Molecular studies and antibiotic resistance of E. coli isolated from different hosts. Alexandria journal of Veterinary Science 31, 125-135.
- Bains, B.S., 1979. A Manual of Poultry Diseases. Roche Publishing, Switzerland.
- Barnes, J., Gross, B., Calnek, W., Barnes, J., Beard,
 W., McDougald, M., Saifin, M., 1999.
 Colibacillosis. In: Diseases of poultry.
 Ames: Iowa State University Press, 131–141.
- Chang, Y.C., Shih, D.Y., Wang, J.Y., Yang, S.S., 2007. Molecular characterization of class 1 integrons and antimicrobial resistance in Aeromonas strains from foodborne outbreak-suspect samples and environmental sources in Taiwan. Diagn Microbiol Infect Dis 59, 191-197.
- Chart, H., Smith, H., La Ragione, R., Woodward, M., 2000. An investigation into the pathogenic properties of Escherichia coli strains BLR, BL21, DH5α and EQ1. Journal of Applied Microbiology 89, 1048-1058.

- Choudhury, B.A., Chanda, P., Dasgupta, R.K., Dutta, L., Saha, S., Bhuin, L., Saha, Bhuin, S., 1993. Studies on yolk sac infection in poultry: antibiogram of isolates and correlation between in-vitro and in-vivo drug action. Indian J. Anim. Hlth. 32, 21-23.
- CLSI, 2011. Clinical and Laboratory Standards Institute antimicrobial susceptibility testing standards M2- A9 and M7-A7.
- Coutts, G.S., 1981. Poultry Diseases Under Modern Management. 2nd Edition. Saiga Publishing Co. Ltd. London. England.
- Cravioto, A., Gross, J., Scotland, M., Rowe, B., 1979. Escherichia coli belonging to traditional infantile enteropathogenic serotypes. Curr. Microbiol. 3, 95-96.
- Dias da Silviers, W.F., Erreira, A., Brocchi, M., Maria de Holland, L., Pestana de Castro, A.F., Tatsumi Yamada, A., Lancellotti, M., 2002. Biological characteristics and pathogenicity of avian *E.coli* strain. Vet. Microbiol. 85, 47-53.
- El-Jakee, J., Mahmoud, R., Samy, A., El-Shabrawy, M., Effat, M., Gad El-Said, W., 2012. Molecular Characterization of E. coli Isolated from Chicken, Cattle and Buffaloes. International Journal of Microbiological Research 3, 64-74.
- Finegold, Martin, 1982. Bailey and Scott's. Diagnostic Microbiology. 6th Ed. The C.V. Mosby Company. St. Louis, Toronto, London.
- Gaze, W.H., Abdouslam, N., Hawkey, P.M., Wellington, E.M., 2005. Incidence of class 1 integrons in a quaternary ammonium compound-polluted environment. Antimicrob Agents Chemother 49, 1802-1807.
- Ghanbarpour, R., Salehi, M., 2010. Determination of Adhesion Encoding Genes in Escherichia coli isolates from omphalitis of chicks. American Journal of Animal and Veterinary Sciences 5, 91-96.
- Gillings, M.R., Holley, M.P., Stokes, H.W., 2009a. Evidence of dynamic exchange of qac gene cassettes between class 1 integrons and other integrons in freshwater biofilms. Fems Microbiol. Lett. 296, 282-288.
- Gross, B., 1994. Diseases due to Escherichia coli in Poultry, in Escherichia coli in Domestic Animals and Man. Gylcs C.L. (Ed.), , CAB International, Wallingford, UK. pp. 237-259.
- Gross, W.B., 1991. Colibacillosis diseases of poultry, 9th Ed: pp. 38-144, Editors Calnek, B.W. et.al., Lowa State Univ. Press, Ames. Iowa State Univ.

- Gyurov, B., 1985. Sensitivity to some therapeutic drugs E. coli serotypes isolated from fowls with coli septicemia. Veterinario meditsinski Nauki 22, 16-24.
- Hammoudi, A., Aggad, H., 2008. Antibiotic resistance of E. coli strains isolated from chickens collibacillosis in Western Algeria. Turk J Vet Anim Sci 32, 123-126.
- Heba, R., A., S., Mohamed, R., 2012. Incidence of *E. coli* in chickens and ducks in different governorates in Egypt. 1st Conf. Of An. Health Res. Inst. Assoc.
- Hegstad, K., Langsrud, S., Lunestad, B.T., Scheie, A.A., Sunde, M., Yazdankhah, S.P., 2010.
 Does the wide use of quaternary ammonium compounds enhance the selection and spread of antimicrobial resistance and thus threaten our health. Mic. Drug Rest. 16, 91-104.
- Holmberg, D., Osterman, T., Senger, A., 1984. Drug resistant E. coli from animal fed antimicrobial. New England J. Medicine 311, 617-622.
- Iqbal, M., Shah, I.A., Ali, A., Khan, M.A., Jan, S., 2006. Prevalence and in vitro antibiogram of bacteria associated with omphalitis in chicks. Pakistan Veterinary Journal 26, 94-96.
- Jakaria, A.T.M., Islam, M.A., Khatun, M.M., 2012. Prevalence, characteristics and antibiogram profiles of Escherichia coli isolated from apparently healthy chickens in Mymensingh, Bangladesh. Microbes and Health 1, 27-29.
- Jordan, F.T.W., 1996. Staphylococci. In: Jordan, F.T.W. and Pattison, M. (Eds.). Poultry Diseases, 4th Edition. Saunders, London.
- Kahn, C.M., Line, S., Aiello, S.E., 2008. The Merck Veterinary Manual. 9th Edn. Merck and Co., Inc., USA., pp: 2258-2259.
- Kawalilak, L.T., Ulmer Franco, A.M., Fasenko, G.M., 2010. Impaired intestinal villi growth in broiler chicks with unhealed navels. Poult Sci 89, 82-87.
- Kilic, A., Ertas, H., Muz, A., Ozbey, G., Kalender, H., 2007. Detection of the eaeA Gene in Escherichia coli from Chickens by Polymerase Chain Reaction. Turk. J. Vet. Anim. Sci. 31, 215-218.
- Kok, T., Worswich, D., Gowans, E., 1996. Some serological techniques for microbial and viral infections. In Practical Medical Microbiology (Collee, J.; Fraser, A.; Marmion, B. and Simmons, A., eds.). 14th ed., Edinburgh, Churchill Livingstone, UK.
- Kolar, M., Bardon, J., Sauer, P., Kesselova, M., Cekanova, L., Vagnerova, I., Koukalova, D., Hejnar, P., 2005. Fluoroquinolone-Resistant

Escherichia coli and Proteus mirabilis in Poultry of Middle Moravia, Czech Republic. Acta Vet. Brno 74, 249–253.

- Mak, J.K., Kim, M.J., Pham, J., Tapsall, J., White, P.A., 2009. Antibiotic resistance determinants in nosocomial strains of multidrug-resistant Acinetobacter baumannii. J Antimicrob Chemother 63, 47-54.
- Naurin, S., Islam, M.A., Khatun, M.M., 2012. Prevalence of Salmonella in apparently healthy chickens in Mymensingh, Bangladesh. Microbes and Health 1, 30-33.
- Nazir, K.H.M.N.H., Rahman, M.B., Nasiruddin, K.M., 2004. Molecular base of diversified Escherichia coli isolates potentiating antibiotic resistant pattern and compromising epidemiology. MS Thesis, Department of Microbiology and Hygiene, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh.
- Oxoid, M., 1998. Manual of culture media, ingredients and other laboratory service.
- Prescott, F., Baggot, D., Walker, D., 2000. Antimicrobial therapy in veterinary medicine. 3 rd ed. Iowa State University Press. Ames, Iowa, pp: 602-616.
- Quinn, P.J., Markey, B.K., Carter, M.E., Donnelly, W.J.C., Leonard, F.C., 2002. Veterinary Microbiology and Microbial Diseases. Salmonella serotypes. Great Britain by HPG, Books Ltd., Bodmin, Cornwall, UK. pp.114 – 118.
- Rahimi, M., 2013. Antibioresistance Profile of Avian pathogenic Escherichia coli Isolates Recovered from Broiler Chicken Farms with Colibacillosisin Kermanshah Province, Iran. Global Veterinaria 10, 447-452.
- Randall, L.P., Cooles, S.W., Piddock, L.J., Woodward, M.J., 2004b. Effect of triclosan or a phenolic farm disinfectant on the selection of antibiotic-resistant Salmonella enterica. J Antimicrob Chemother 54: , 621-627.
- Roy, P., Purushothaman., V., Koteeswaran, A., Dhillon, A., 2006b. Isolation, Characterization and Antimicrobial Drug Resistance Pattern of Escherichia coli Isolated from Japanese quail and their Environment. J. Appl. Poul. Res. 15, 442-446.
- Russell, A.D., 2000. Do biocides select for antibiotic resistance? Journal of Pharmacy and Pharmacology 52, 227–233.
- Saif, Y.M., Fadly, A.M., Glisson, J.R., McDougald, L.R., Nolan, L.K., 2008.

Diseases of Poultry. 12th Edn., Blackwell Publishing, London, pp: 703-705.

- Salehi, T., Safarchi, A., Peighambari, S., Mahzounieh, M., Salehi, T., Safarchi, A., Peighambari, S., Mahzounieh, M., Khorasgani, M., 2007. Detection of stx1, stx2, eae, espB and hly genes in avian pathogenic Escherichia coli by multiplex polymerase chain reaction. J. Vet. Res. 62, 37-42.
- Samah, E., Ahmed, E., 2013. Characterization of E. coli Associated With High Mortality In Poultry Flocks. Assiut Vet. Med. J. 59, 51-61.
- Sharada, R., Ruban, S., Thiyageeswaran, M., 2010. Isolation, Characterization and Antibiotic Resistance Pattern of Escherichia coli Isolated from Poultry. American-Eurasian Journal of Scientific Research 5, 18-22.
- Simonelli, P., Troedsson, C., Nejstgaard, C., Zech, K., Larsen, B., Frischer, E., 2009. Evaluation of DNA extraction and handling procedures for PCR-based copepod feeding studies. J. Plankton Res 31, 1465-1474.
- Srinivasan, P., Balasubramaniam, G.A., Murthy, T.R., Balachandran, P., 2013. Bacteriological and pathological studies of egg peritonitis in commercial layer chicken in Namakkal area. Asian Pac J Trop Biomed 3, 988-994.
- Suardana, W., Artama, T., Asmara, W., Daryono, B., 2011. Adherence Pheno-genotypic of Escherichia coli O157:H7 Isolated from Beef, Feces of Cattle, Chicken and Human. Suardana Journal of Biotechnology 16, 46-52.
- Suha, A.H., Ali, H.H., Rizgar, R.S., 2008. bacteriological and pathological study of yolk sac infection in broiler chicks In Sulaimani district. Dept. of Basic Sciences, Anatomy and Histopathology, College of Veterinary Medicine, University of Sulaimani, Kurdistan Region, Iraq. Kurdistan 1st Conference on Biological Sciences. J. Dohuk Univ 11.
- Suwanichkul, Panigrahy, 1988. Diversity of piles subunits of E.coli isolated from avian species. Avian Disease 32, 822-825.
- Tricia, M., McLaughlin, W., Brown, D., 2006. Antimicrobial resistance of Escherichia coliisolates from broiler chickens and humans. BMC Veterinary Research 2, 7.
- Ulmer Franco, A.M., 2011. Yolk Sac Infections in Broiler Chicks: Studies on Escherichia coli, Chick Acquired Immunity and Barn Microbiology. PhD thesis, University of Alberta Edmonton, Alberta, 1-197.

- van den Bosch, J.F., Hendriks, J.H., Gladigau, I., Willems, H.M., Storm, P.K., de Graaf, F.K., 1993. Identification of F11 fimbriae on chicken Escherichia coli strains. Infect Immun 61, 800-806.
- Wang, C., Zhan, Q., . , Mi, Z., Huang, Z., Chen, G., 2008a. Distribution of the antisepticresistance gene qacE delta 1 in 283 clinical isolates of Gram-negative bacteria in China. Journal of Hospital Infection 69, 394–396.
- Wani, S.A., Samanta, I., Bhat, M.A., Nishikawa, Y., 2004. Investigation of shiga toxin-

producing Escherichia coli in avian species in India. Lett Appl Microbiol 39, 389-394.

- Yassin, H., Velthuis, A.G., Boerjan, M., van Riel, J., 2009. Field study on broilers' first-week mortality. Poult Sci 88, 798-804.
- Zakeri, A., Kashefi, P., 2012. Isolation and Drug Resistance Pattern of Escherichia Coli from Cases of Colibacillosis in Tabriz. Journal of Animal and Veterinary Advances 11, 3550-3556.