Effects of prebiotics supplementation on Nile tilapia, emphasizing phospholipids aquafeed - A review.

Mohamed Ahmed Fathi Ali1,2*, Hiam Elabd1, Mohsen Azouz2, Adel Shaheen1, Amel El-Asely1, Eman Abd El-Gawad1, Aya Matter1, Hadeer Youssouf2 and Amany Abbass3

1 Department of Aquatic Animals’ Medicine, Faculty of Veterinary Medicine, Benha University, Mosttohor, Toukh, 13736, Egypt
2 Military Veterinary Services Administration, The Egyptian Armed Forces (EAF).

ABSTRACT

Aquaculture has been a growing provider of animal protein industry in recent decades. Tilapia is a very valued fish cultivated across a vast geographical region in numerous countries, including Egypt. Tilapia has the advantage of being tolerant of a wide range of environmental circumstances and utilizing food from the lowest trophic levels. In recent decades, aquaculture has become a greater contribution to animal protein supply. Tilapia is a highly valued fish grown in a wide range of nations, including Egypt, as a source of animal protein. Tilapia could be tolerant to various environmental conditions. Some natural bio-friendly feed additives such as probiotics, prebiotics, and symbiotics are become a new approach in aquaculture industry to maintain aquaculture species health and a good environment at the same time produce chemical and antibiotic-free aquaculture product they become popular dietary supplements with the potential to increase not only growth performance, but also immunological competence and general well-being of fish and crustaceans. The prebiotics preparations are known to be important feed additives to be used in the aquaculture industry to sustain both aquatic species and environmental health. This makes them popular incorporations to enhance not only the growth indicators but also the immunological competence and general well-being of fish and crustaceans. The current review paper focuses on the possible effects of phospholipids (P.L.) containing prebiotics on the health, immunological response, growth performance, and survival of Oreochromis niloticus.

1. Oreochromis niloticus culture

The Nile tilapia Oreochromis niloticus is typically found throughout the African countries and worldwide (Elsaied et al., 2019). It is a member of cichlids and comes in the second place of the world produced freshwater fishes (F.A.O., 2012, 2014). However, the input of aquaculture and tilapia to the total African production of animal protein, it is still inadequate (F.A.O., 2018, 2020). Boosting tilapia production may offer an improving strategy for adopting aquaculture to increase animal protein and raise Africa's currently very low protein intake. Tilapia is among the most extensively cultivated fish worldwide. Farmed tilapia accounts for more than 77% of global tilapia output (F.A.O., 2009).

Murphy et al. (2020) has reported an increase in the national aquaculture production, that review was prepared in the period from 2000 to 2016 and detected that increase starting 3.5 × 10^3 Mt toward 13.7 × 10^3 Mt. Tilapia particularly improved from almost 1.6 × 10^3 Mt in 2000 to 10 Mt 10^3 Mt in 2016. The Egyptian tilapia industry provides 47.9% of the total fish supply, which weighs around 941.308 Mt tilapia productions. Recently, the genetically improved O. niloticus was presented in Egypt, resulting in higher performance; with better-quality strains recording a 27.9 percent greater harvest level (Ibrahim et al., 2013; Marjanovic et al., 2016 and Dickson et al., 2016). According to estimates, Egypt ranks first and places in superior levels in aquaculture tilapia production compared to other African nations (Ali et al., 2020). Remarkably, the aquaculture industry secures around 585,000 jobs for workers in this area (El-Sayed et al., 2021). As a result, unanticipated deaths are thought to generate significant financial losses in aquaculture processes. It should be emphasized that the Egyptian Tilapia farms were mostly presented as small-scale farms of 10 feddan or less, accounting for approximately half of all O. niloticus farms (Eltholth et al., 2015).

2. Nile tilapia feeding behavior

Nile tilapia’s dietary habits are herbivorous, even though it is an omnivore species. The farming of Tilapia is inexpensive because it nurses on a short chain of the feed in a fish farm, reducing the pressure on the species for preying. Furthermore, tilapia feeding patterns avoid the accumulation of contaminants at higher food chain levels (Barlow, 2000). Tilapia feed mostly on decomposing organic debris, and they can capture plankton in their gill mucus (Fryer and Iles, 1972). Tilapia has a lengthy gut that can digest planktons, and its feeding habits are classed as unceasing feeding.

* Corresponding author: Mohamed Ali, Military Veterinary Services Administration, The Egyptian Armed Forces. E-mail: sawa_sawasawa@yahoo.com

1
action, which means they should have their daily meal on almost from 3 to 4 times. The important characteristic of *Oreochromis niloticus* is its sensitivity to cold weather, with an optimal level for development at 28 to 32 degrees Celsius. In the interim, a decrease of 31% in growth performance was reported with low temperature of 20 to 22°C (Lim, 1989).

3. Prebiotics

Prebiotics could be defined as any material, nutrient, substrate or fiber that assists as nutrient to the useful microbes in a host digestive tract (Mountzouris, 2022). Prebiotics should be able to withstand stomach acidity. Thus, a prebiotic could also be described as a material that resist acidic gastric conditions, might be fermented by gut microorganisms and effectively stimulate the gut microbiota growth to advance the gut well-being and host status (Davani-Davari et al., 2019). They should be fermentable by the helpful gut microorganisms. Furthermore, prebiotics should encourage the beneficial microorganism’s growth that benefits the host’s health (Guerrero et al., 2017). Prebiotics are famous for their favorable properties on gut micro-flora health and were reported to aid in the healing route of gut microorganisms following gut symbiosis in illness circumstances (Akram et al., 2019). Prebiotics are hypothesized to provide health advantages to the gut by boosting the amount of gut micro-flora at the expense of dangerous microorganisms (Khangwal and Shukla, 2019). One method to overcome antibiotic overuse in aquatic health management is to employ prebiotics as feed additives (Song et al., 2014; Zulhisyam et al., 2020; Kari et al., 2021, 2022).

These incorporations are being widely described to produce encouraging results in terms of growth enhancement (Ramos et al., 2017), improving immunological reactions (Selim and Reda, 2015), resistance to various diseases (Li et al., 2018), and relieving abiotic stressors in aquatic animals (Hoseinifar et al., 2014).

3.1. Prebiotics in aquaculture

Prebiotics, often known as helpful compounds, offer food or energy to beneficial microbes. Prebiotics were used to improve fish health by favoring gut microbiota growth (Rohani et al., 2021). Arabinofuranosyl oligosaccharide (AXOS), β-glucan, inulin, galacto-oligosaccharide (GOS), oligosaccharides, fructo-oligo saccharides (FOS), and mannan-oligosaccharide (MOS) were shown to improve aquaculture species' growth indicators (Li et al., 2018), feed consumption efficacy (Shoaei et al., 2015), immune response (Li et al., 2005, Li et al., 2021), and disease resistance (Figure, 1) (Yilmaz et al., 2022). As a result, no doubt using prebiotics can aid to boost aquatic animals’ output. Nevertheless, the fish gut biota is prebiotic-selective. Not all prebiotics are universal in their ability to encourage the expansion of the gut flora. Prebiotics like FOS (fructo-oligosaccharides) and GOS (galacto-oligosaccharides), for example, have been shown to enhance gut bacteria like Bifido bacterium and Lactobacillus sp. (Gibson et al., 2017). This is due to the enzymes that Bifido bacterium and Lactobacillus sp. both have that ferment oligosaccharides. Regardless of the facts, more prebiotics added to fish feed can encourage more gut flora species of aquatic animals, improving their health (Teitelbaum and Walker, 2002).

A Prebiotic can promote host gut flora growth (Dawood and Koshio, 2016). This might help in the development of aquatic creatures. Prebiotics can also improve feed efficacy (Figure 2). As a result, it can reduce feed conversion ratio (FCR) and boost aquatic animal growth performance. According to a literature review, numerous different forms of prebiotic mixes efficiently support the growth of several aquatic species (Ganguly et al., 2013). According to the literature review, several prebiotic mixes successfully stimulate the growth of many fish and aquaculture species.

3.1.1. Prebiotic supplementations effects on aquatic animals’ growth performance

Gut microbiota could efficiently promote the growth of fish (Dawood and Koshio, 2016). This will assist in boosting the growth of fish and other aquatic animals. In addition, Prebiotics preparations can likewise upsurge feed usage and efficiency. Thus, it can raise the growth rate and minor the feed conversion rate (FCR) of aquatic animal (Ganguly et al., 2013). It was reported that various mixtures of prebiotic and supplementations successfully promote the growth and weight gain of several aquatic species (Lu et al., 2019). For instance, red drum (Sciaenops ocellatus) supplemented with GOS + FOS + Galacto-gluco-mannans (GGM) + MOS mixtures (Zhou et al., 2010), post-larvae of Litopenaeus vannamei supplemented with GOS + inulin + FOS (Oktaviana and Yuhana, 2014), Chinese mitten crab (Eriocheir sinensis) incorporated with MOS + inulin + β-glucan (Lu et al., 2019) and much more for example presented in Table 1. β-glucan prebiotic, was reported to improve the growth of many aquatic animals when used separately or in combination with several additional prebiotics. β-glucan, when combined with MOS will represent a perfect mixture that successfully can boost the Nile tilapia (*O. niloticus*) growth performance (Selim and Reda, 2015), and was reported to exert the same actions in other species for example, shabout (Tor grapus) (Mohammadian et al., 2021), Chinese mitten crab (Eriocheir sinensis) (Lu et al., 2019), snake head (Channa striata) (Munir et al., 2016), and Caspian trout (Salmonotutra cassinus) (Jami et al., 2019).
Calcium format prebiotics when used separately or as a mixture with others at the rate of 0.5 and 1.5 percent can enhance the growth and feed conversion of fishes. Moreover, ACIDLAC® organic acids mixture when used as a replacement will have growth enhancement and other advantageous effects (Benedetto, 2003). Mairoka et al. (2004) similarly showed that organic acids compounds might successfully substitute antibiotic growth promoters (AGPs) and other chemicals for improved overall performance. Almost synchronization occurs between probiotics and prebiotics, where probiotics augment the theory of prebiotics, through selectively stimulating the growth of gut beneficiary bacteria plus activating the metabolism of those bacteria that will improve the intestinal stability. However, the data about the prebiotics applications in aquaculture is still inadequate. It is reported that prebiotic Fermacto® addition (1, 2 and 3 g/kg) in aqua feeds displayed considerably higher body weight and better food conversion ratio in common carp fry. Rearing conditions of carp fry were improved after feeding Fermacto prebiotic at an optimal level of 3 g/kg (Mazurkiewicz et al., 2008).

3.1.2. Effect of dietary phospholipid (PL) supplementation in aquafeeds

In larval and juvenile stages of several species of fish and crustaceans, dietary phospholipid (PL) supplementation in purified diets has been shown to positively affect survival, growth, resistance to stress testing, and abnormalities. Due to the difficulties of bio-encapsulating PL in live prey, it is difficult to determine the precise PL needs in larvae. It is also challenging to compare needs estimated with artificial diets due to the wide variation in purity and content of PL sources and experimental settings (such as diet formulation and degree of co/pre-feeding with real food). Larval stages need more nutritional PL than juveniles because they are so vulnerable to a dietary PL shortage. Red sea bream larvae and goldfish larvae both had substantial reductions in survival. As evidenced by the survival of young fish, such as rock bream Oplegnathus fasciatus and sea bass, juvenile fish appear to be less impacted by the dietary PL supply than larvae (Kanazawa, 1993).

There is substantial debate about whether high dietary phospholipid levels are harmful to fish and crustaceans. Increasing dietary PL levels over the necessary level did not affect survival or growth in several trials (Kanazawa, 1993). However, when more than 3% soybean lecithin was included in the diet, larval P. japonicus survival was reduced (Coutteau et al., 1996). It has been proposed that lecithin is needed as a surfactant for effective lipid emulsification and digestion in early crustacean and fish larval stages (Koven et al., 1998). Dietary PL is more important in larval fish and crustaceans than in juveniles. Because of their capacity to transport lipids and retain fatty acids, PL fractions such as Phosphatidyl choline (PC) and PI are more effective in larvae. Furthermore, PLs increase food features regarding water stability via their gum characteristics and chemo-attractive capabilities. Because of its increased digestibility, it outperforms neutral lipids in terms of essential fatty acid and energy content. The favorable effects of PL lead to increased development, survival, and quality in fish and crustacean larvae. Sea bass larvae can use PL more effectively than neutral lipids, resulting in increased growth, survival, and skeletal development Cahu et al., 2003; Olsen et al., 2014). The key bottleneck is the reduced survival of freshwater catfish (Clarias batrachus and Heteropneustus fossilis) larvae, which might be addressed by PL supplementation in the diet (Olsen et al., 2014). As a result, further studies on these species are required.

3.1.3. Effects of prebiotic mixtures containing soybean lecithin on the growth performance of aquatic animals

The fish performance and innate immune response can be significantly enhanced by using the lecithin-containing bio-emulsifier Lysomax® for farmed Nile tilapia to perform at their optimum and maintain good health, around 0.45 g/kg of feed would be sufficient (El-Sayed et al., 2021). The aquafeed industry has been obliged to lower the quantities of dietary fish oil in feed formulations due to the constant rise in fish oil costs and their unsustainable supply. An extensive study has been done on partially substituting plant oil with fish oil (Santigosa et al., 2011). Freshwater fish respond differently to additional PLs depending on the species, stage of growth, and environmental factors. In larval common carp (Cyprinus carpio), for instance, dietary PL was crucial for growth, survival, feed utilization, and optimal health, most likely because immature fish cannot synthesize PL (Fontagne et al., 2000). However, because they can produce PL from nutritional precursors, bigger fish may not benefit from more PL. Supplemental soy lecithin, on the other hand, had no impact on fingerling and juvenile channel catfish survival, growth rates, or feed efficiency (Sink and Lochmann, 2014).

3.1.4. Prebiotic supplementations effect on aquatic animals’ immune response and disease resistance

Prebiotic could be an intricate carbohydrate that might offer a source for energy for gut microbiotic abundance, therefore it could improve the immune response of aquatic animals and fishes (Mohammad et al., 2022). Prebiotics can motivate immune reactions in fishes. The immune saccharides might be an additional selection to be administered in aquaculture as an alternative to the usage of antibiotics for enhancing the health management of aquatic animals (Hoseinfeld et al., 2020). There are two expending methods for the prebiotics to improve the immune reactions in aquatic animals, whichever through demotion of gut flora growth or innate immune system activation (Song et al., 2014). Nevertheless, the microbiota of animal gut is selective to an exact prebiotic. Thus, the prebiotic mixtures application will provide superior effects on the immune response of aquatic animals (Elumalai et al., 2022) as revealed in Table 2.

Table 1 Effect of prebiotic supplementations on aquatic animals’ growth performance.

<table>
<thead>
<tr>
<th>Supplement</th>
<th>Fish spp.</th>
<th>Concentration g/kg diet</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mannan oligosaccharide and β-glucan</td>
<td>Nile tilapia</td>
<td>0.1 for two weeks</td>
<td>(Lu et al., 2019)</td>
</tr>
<tr>
<td>Mannan oligosaccharide, β-glucan, and dextror</td>
<td>O. niloticus</td>
<td>0.4-2</td>
<td>(Abdel Gayed et al., 2021)</td>
</tr>
<tr>
<td>Lecithin Lysomax®</td>
<td></td>
<td>0.5-1.6</td>
<td>(Ismail et al., 2019)</td>
</tr>
<tr>
<td>β-glucan, MOS</td>
<td>Caspian trout</td>
<td>0.45</td>
<td>(El-Sayed et al., 2021)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(Juma et al., 2019)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Additional Fermentation Products</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glucono-δ-lactone</td>
<td>(El-Sayed et al., 2021)</td>
</tr>
<tr>
<td>Mannan Oligosaccharide</td>
<td>(Abdel Gayed et al., 2021)</td>
</tr>
<tr>
<td>Mannan Oligosaccharide</td>
<td>(Ismail et al., 2019)</td>
</tr>
<tr>
<td>Mannan Oligosaccharide</td>
<td>(Juma et al., 2019)</td>
</tr>
</tbody>
</table>

The table above displays the effects of prebiotic supplementations on aquatic animals’ growth performance. It shows the concentration of different supplements and their effects on various fish species. The data reveals the importance of prebiotics in improving the growth and health of aquatic animals. The concentration of each supplement is given along with the reference study that supports these findings.
There are very few studies on immune modulation by dietary PL. Phosphatidyl serine has the immune modulatory role in white shrimp (Penaeus vannamei) when supplemented in diet that can increase total hemocyte count and phenoloxidase values of hemocyte and plasma. Besides these, it can also modulate antibacterial and bacteriolytic activities in blood plasma, and PL can modulate anti-stress capacity in shellfish. Inclusion of PL in diet improves the gill health of grass carp, indicating enhanced immunity and antioxidant status and it is also reported that supplementation of PL in diet can improve gut health and immunity through modulation of lysozyme, up-regulating expression level of interleukin 10, down-regulated tumor necrosis factor α (TNF-α), superoxide dismutase, glutathione peroxidase and glutathione reductase (Cui et al., 2018).

Similar to this, immune responses (phagocytic activity, respiratory burst activity lysozyme activity, and phenoloxidase values) in O. niloticus fed lecithin-containing diets, particularly at 0.4 g/kg, were greatly improved compared to the control diet-fed fishes. These findings unequivocally show that Lysoxam enhances innate immunity in this species. This may be explained by the fact that dietary PLs and their unsaturated fatty acids can make cell membranes more permeable and fluid, which strengthens fish immune (Balfry and Higgs, 2001).

The increased phospholipid composition and fatty acid outline of Lysoxam may also be responsible for improving fish immunity as a result of supplementation. Phospholipids are the precursor of the substrate fatty acids needed for producing eicosanoids (EPA, 20:5n-3) (Balfry and Higgs, 2001). Most of the research highlighted in this review focused on the favorable benefits of prebiotic combinations as feed additives, which can boost aquaculture output by encouraging growth, strengthening the immune system, raising disease resistance, and lowering stress in aquatic animals. Research has been undertaken to assess the potential of prebiotics or prebiotic combinations to lower stress in aquatic animals. However, when introducing prebiotics to aquaculture species, correct dose and prebiotic type considerations must be made. A high dose of prebiotics can be harmful to aquatic animals, whilst other types of prebiotics can only boost growth but not the immune response or resistance to diseases of aquatic animals. There is still a gap between practical applications and scientific findings of prebiotics in aquatic animals.

REFERENCES
2. Akram, W., Garud, N., Joshi R., 2019, ‘Role of inulin as prebiotics on inflammatory bowel disease’, Drug Discoveries & Therapeutics, 2019, 13(1). 1-8, Released on J-STAGE Online, ISSN 1881-784X, Print ISSN 1881-7831
from trials on terrestrial and aquatic animals', Fish and Shellfish Immunology, 76, 272–278.

