Xylazine, ketamine, and propofol general anesthesia for laparoscopic intervention in goats
Abdelhaleem H. El-Kasapy
Surgery, Anesthesiology and Radiology Department, Faculty of Veterinary Medicine, Benha University.

1. INTRODUCTION

Due to their ease of use, compliance, and relatively low cost, goats have been used as animal models in various studies, mainly cardiovascular and regeneration, orthopedic, and reproductive studies. Anesthesia is usually important for further research studies with these animals. Using a mixture of premedication and general anesthesia is mentioned to be as multimodal anesthesia (Brown et al., 2018). The idea of multimodal anesthesia is that the mixed drugs may act synergistically to produce anxiolysis, smooth induction, and reduce dosage requirements of anesthetic, thus reducing unfavorable effects of each drug. Laparoscopic surgical techniques are better than traditional surgical approaches for goats (Devitt et al., 2005; Röcken et al., 2011; Daniel et al., 2019). The laparoscopic procedures admit many advantages include less operative trauma and postoperative pain, fast recovery, and excellent visibility of organs and structures in the abdomen (Baldassarre et al., 2007; Hunter et al., 2012).

Many surgical procedures can be performed by using laparoscope which including cholecystectomy, ovariohysterectomy, cryptorchidectomy, gastropexy, abdominal organ biopsy, splenectomy and others (Kassem et al., 2011; Butkovic et al., 2020). Perfect anesthesia is necessary for successful laparoscopic procedures to produce relaxation, immobilization, and unconsciousness. Many anesthetic protocols were discussed for laparoscopic intervention such as local infiltration along the portal sites with sedation or tranquilization (Shin et al., 2008; Dovenski et al., 2012), lumbosacral epidural analgesia (Fazili et al., 2015) and a combination of sedative and anesthetic agents which has been broadly used to achieve optimum analgesia, sedation and muscle relaxation particularly during the complex and prolonged surgical intervention that require whole control of movement and pain during surgery (Ragab et al., 2022). The balanced anesthetic protocol comprises a combination of drugs that produces a general anesthetic effect with minimal adverse effects on cardiopulmonary function (Akter et al., 2020).

A suitable pre-anesthetic drug (xylazine) was a highly selective alpha-2 adrenoceptor agonist with potent analgesic and sedative properties and muscle relaxant effect for painful procedures (Asif et al., 2021). Ketamine is a dissociative anesthetic agent that has profound analgesia and produces stable hemodynamic effects during anesthesia, which counteracts the depressant effects of other drugs used during anesthesia (Celestine et al., 2014). Propofol is a phenolic compound unrelated to general anesthetic, non-barbiturates, non-dissociative, and noncumulative intravenous anesthetic agents (Prassinos et al., 2005; Celestine et al., 2014). Propofol has good quality anesthesia, has short duration of action with rapid recovery, may be used alone or in combination with other drugs, and has a wide safety range (Steffey et al., 2009).

The study aimed to explain the best way to total intravenous anesthesia for the goats underwent laparoscopic intervention.
2. MATERIAL AND METHODS

The study was conducted after receiving the approval from the institutional animal ethics committee, Faculty of Veterinary Medicine, Benha University (BUVFTM 43-06-23).

Animals:

Eighteen Egyptian goats aged from 3-4 years weighing 10-15 kg were used for laparoscopic ovariectomy and ovariohysterectomy training skills. The animals were admitted to the training center of the society 3 days before the operation. Physical examination was performed and food but not water was withheld for nearly 24 hours before induction of anesthesia.

Anesthetic protocol:

The goats were sedated with an intramuscular injection of xylazine HCl (Xylaject®, Adwia, Egypt) at a dose of 0.05mg/kg b.wt. After 5 minutes an intramuscular injection of Ketamine HCl (ketamex-50®, Tirokka pharmaceuticals Ltd, India) at a dose of 3.5 mg/kg b.wt. Ten minutes after beginning of the protocol, 20 gauge, and 2.5 cm cannula was placed in each goat in the jugular vein. Propofol (Diprivan® 1%, Fresenius Kabi USA) was administrated intravenously by a dose rate 2.5 mg/kg b.wt. The calculated dose of propofol was diluted three times by normal saline. The total solution of diluted propofol was given through intravenous catheter by divided manner of 1 ml every 5 minutes to maintain anesthesia for a period of 50 minutes.

Assessment of anesthesia:

1- Clinical evaluation through numeric scoring system to estimate several reflexes table (1) and 5-point sedation scale table (2) (Ragab et al., 2022).

| Table 1: Numeric scoring system applied to estimate several reflexes |
|--------------------------|-------------------|-------------------|-------------------|------------------|
| Clinical parameters | Scores | 0 | 1 | 2 | 3 |
| Jaw relaxation | | | | | |
| Not permitting jaw opening | The animal resists opening and closes its jaw rapidly | | | | |
| | The animal has less resistance to opening its jaw and wraps it slightly | | | | |
| | There is no resistance and the jaw still opens | | | | |
| Palpebral reflex | | | | | |
| Rapid blink | Intact but weak (slow response) | | | | |
| | Intact but very light (slow and occasionally response) | | | | |
| | Abolished | | | | |
| Pedal reflex | | | | | |
| Potent withdrawal | Intact (slow) | | | | |
| | Intact but very light (slow and occasionally response) | | | | |
| | Abolished completely | | | | |

2- Induction and recovery quality were judged according to (Abouelletouh et al., 2022) and classified into good, fair and poor

3- Physiological parameters: The heart rate, respiratory rate and rectal temperature were assessed by vet vision monitor (Eckymeir, Germany) and statistically analyzed.

Surgical procedures:

Once the anesthesia was induced, the goat was Trendelenburg positioned (surgical position most often used during lower abdominal surgeries where the animal lies flat on their back, on the operating table with their hind legs raise higher than head) with 20-degree (special cradle was designed to facilitate the approach of this position) (Fig.1). The ventral surface of the abdomen was prepared for aseptic surgical interference and the goats were draped. Three portals were performed by scalpel 1.0-1.5 cm skin incision for each. The first portal was located at the trans-umbilical region with 10 mm diameter; this portal was used for insufflation of CO₂ to produce pneumoperitoneum with rate 12 L / min until maximum pressure of 10 mmHg was achieved. Through this portal inspection of the abdominal cavity was performed by a camera and light source (Karl Storz, Tuttlingen, Germany) (Kassem et al., 2011).

The other two instrument portals were performed 7-10 cm caudal to the first incision in the right and left para-inguinal regions with 5 mm diameter (Fig.2). After completion the inspection, observation, surgical intervention (ovariectomy and ovariohysterectomy) and removal of the intrabdominal instrument the three portal were sutured by 2/0 Vicryl through simple interrupted pattern. The animals received 50 mg /kg b. wt cefotaxime sodium (cefoxax®,EPICO, Egypt) intramuscular per day and flunixin meglumine (Finadyne®, MSD Animal Health, Walton, United Kingdom, 2 mg/ kg I. v.) and daily dressing for 5 day.

3. RESULTS

The results of our study showed that, pre laparoscopic fasting for 24 hours was highly beneficial to decrease the size of the rumen and gastrointestinal tract and reducing the regurgitation of food. Food fasting beside pneumoperitoneal insufflation with CO₂ increased the abdominal cavity and facilitates the exposure and the inspection of the abdominal viscera and/or organs. No penetration of the viscera was recorded in all animals. Dorsal recumbency with Trendelenburg positioned with 20-degrees increased the visualization and manipulation of the abdominal content and was satisfactory to perform ovariectomy and ovariohysterectomy in goats, without any pressure on the thoracic organs. The three portals for laparoscopic intervention allowed optimal visualization of the various pelvic viscera, ligament supporting urogenital organs, major blood vessels, internal inguinal ring and the muscle lining the pelvic cavity in goats (Fig 3).

The anesthetic regimen which formed from xylazine HCl as premedication, Ketamine as general

42
anesthetic and propofol for maintenance of the anesthesia showed that the induction was smooth, rapidly assumed recumbency and no signs of excitement.

The recorded clinical findings were extended to show the time of anesthesia of the previously mentioned dose was variable from 40 to 50 minutes. During this period the goats revealed complete muscle relaxation of jaw and abdominal wall and absence of palpebral, pedal and swallowing reflexes. No movement of any goat was recorded during the time of anesthesia.

The recovery of the animals displayed smooth, easy transition to awareness, recurred to sternal position, ability to stand within 5 minutes and ability to walk with slight ataxia. The animals talk their attitude of urination, defecation, drinking behavior, cud chewing and their appetite within one hour after recovery.

The heart rate was significantly reduced from 15 to 30 minutes after induction of anesthesia and showed non-significant decrease from 45 minutes until recovery take place.

The respiratory rate decreased significantly at 30 minutes after induction, it showed non-significantly decreased at 45 minutes after induction. However, it significantly increases at the time of recovery and animal movement to change their position and make the behavioral attitude of different physiological functions. There was no significant difference in rectal temperature until evoking time (table 3).

Table (3) showing the heart rate, respiratory rate and rectal temperature* before, during (along the time of anesthesia) and after anesthesia.

<table>
<thead>
<tr>
<th>Time</th>
<th>Parameter</th>
<th>0</th>
<th>15 min</th>
<th>30 min</th>
<th>45 min</th>
<th>60 min</th>
<th>75 min</th>
<th>24 hour</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Heart Rate</td>
<td>80±12</td>
<td>50</td>
<td>48</td>
<td>58</td>
<td>61</td>
<td>75</td>
<td>79</td>
</tr>
<tr>
<td></td>
<td>Respiratory Rate</td>
<td>23±023</td>
<td>17±06</td>
<td>13±05</td>
<td>18±04</td>
<td>20±03</td>
<td>21±05</td>
<td>23±08</td>
</tr>
<tr>
<td></td>
<td>Rectal Temperature</td>
<td>39±17°C</td>
<td>38±3°C</td>
<td>37±4°C</td>
<td>38±23°C</td>
<td>37±43°C</td>
<td>38±34°C</td>
<td>38±34°C</td>
</tr>
</tbody>
</table>

4. DISCUSSION

The results of the present report coincide with that reported by (Devitt et al. 2005; Culp et al. 2009; Case et al. 2011). Who stated that the laparoscopic surgery was considered as minimally invasive surgery and have many advantages include the better visualization of the structures within the abdominal cavity, the reduced severity of pain in the postoperative period, and a faster patient recovery.

The results of our study during ovariectomy and ovariohystrectomy revealed that the laparoscopic technique is high academic value. These results come in contact with those reported by (Balsa and Culp, 2019) who mentioned that laparoscopic procedures were used for many surgical interference either in dogs or small ruminants and also used for artificial insemination, embryo transfer and ovum collection for in vitro fertilization they added that Laparoscopy has been used in academic training where the procedures is safe in experienced hands.

The results of this study revealed that pre-operative fasting for about 24 hours is satisfactory to decrease the ruminal content, motility of the gastrointestinal tract and prevent the possibility of accidental puncture of the internal viscera. This result gets in contact with (Fazili et al, 2015) who state that the preoperative fasting is mandatory before any laparoscopic procedure because it was found sufficient to decrease the content of the rumen and large intestine and reduce the intestinal peristaltic motility and reduce the risk of visceral penetration. Also they added that the preoperative fasting is essential during laparoscopic intervention because it improves observation of the abdominal and pelvic structure.

The result of the conducted study reveals that the anesthetic protocol composed of xylazine HCl at a dose of 0.05mg/kg bwt, ketamine HCl at a dose of 3.5 mg/kg bwt and propofol by a dose rate of 2.5 mg/kg bwt, was a suitable anesthetic method and had
satisfactory result that other anesthetic regimens. This result was differed entirely from that recorded by (Hall et al, 2001 and Khajuria et al, 2014). Who stated that the laparoscopic intervention can be performed under the effect of many anesthetic regimens such as local infiltration and lumbosacral epidural anesthesia.

The result of this study was documented by (Edmondson, 2014) who stated that local infiltration is easy to perform but had several disadvantages including, need for large volume of analgesic agent, non-homogenous and delayed wound healing.

Also, these results were supported by Ahmad and Shukla (2013) who discussed that lumbosacral epidural anesthesia in goats undergoing laparoscopy has no satisfactory relaxation of the abdominal musculature therefore make the manipulation harder during laparoscopy.

The results of our study revealed that the quality of induction, recovery was good and the time of anesthesia is satisfactory, sufficient to laparoscopic interference with the stated dose. Absence of palpebral, pedal and swallowing reflexes, complete muscle relaxation of jaw and abdominal wall. This results supported by Abouelfetouh et al, 2022 and Ragab et al, 2022 who mentioned the numeric scoring system applied to estimate several reflexes and 5 point sedation scales which reveling the good quality assumed with recumbency and unresponsive to external stimuli, no resistance and the jaw still opened, stopping the pedal and palpebral reflexes.

The good quality of our regimen is attributed to presence, of alpha-2 adrenoceptor agonist (xylazine HCl) which admits an influence to muscle relaxation, reduce the required dose of ketamine, sedative, analgesic properties and decrease stress level during laparoscopic intervention. These results coincided with Afshar et al 2005 and Abouelfetouh et al 2021. The addition of ketamine to our protocol which considered as dissociative anesthetic agent that has profound analgesia and produces stable hemodynamic effect during anesthesia. This agrees with that mentioned by Celestine et al 2014.

The success goals of the used anesthetic combination depend on presence of propofol use in maintenance of anesthesia. Propofol characterized by good quality anesthesia, rapid onset, short duration of action with rapid recovery. This approved by Celestine et al 2014 and Ragab et al 2022. Who stated that, the smooth induction attributed to combination of more than anesthetic and sedative drugs like xylazine which acts as synergism to ketamine for production of better analgesic effect. They added that the rapid recovery after stopping of propofol administration resulting from no cumulative effect of propofol used for maintenance of anesthesia.

The significant bradycardia which observed at 5 minutes after anesthetic induction and extended to 20 minutes. While significant decrease in respiratory rate was recorded between 10-20 minutes after anesthetic induction. This come in contact with that reported by Aghamiri et al., 2022 Who mentioned that the balanced anesthetic regimen involved the combination of xylazine, ketamine and propofol analgesic drugs to achieve total intravenous general anesthesia with minimal negative effect of individual drugs on the cardiopulmonary function. On the contrary Kutter et al., 2006 stated that there is a significant reduction in respiratory rate between 5-30 minutes after administration, furthermore, these drugs has a significant decrease in heart rate up to 60 minutes after injection

On the other hand the results of this work coincide with Kutter et al., 2006 Aghamiri et al., 2022 who stated that the animals restore ruminal motility, appetite and the attitude of urination and defection within 120 minutes after administration of the anesthetic protocol.

The results of this article stated that the satisfactory visualization and manipulation of the internal viscera was achieved through pneumoperitoneum through insufflation of Co2 as well as the dorsal recumbency with Trendelenburg position by 20 degree. This gets in contact with Daniel et al., 2019 who suggested that the optimum visualization of the internal viscera could be encouraged through abdominal insufflation beside Trendelenburg position with range 15-30 degree. They added that the Trendelenburg angle with 45 degree results in an increase in pressure on the the diaphragm such that dynamic lung compliance and lung size are decreased, which lead to a reduce in cardiac venous return, cardiac output, and oxygen transfer to tissues.

In the present study, usage of 10mm laparoscope (primary portal) at the umbilical area and 5 mm of the other two portals in the pre-inguinal area provided optimum visualization of the abdominal viscera, ligaments supporting the internal organs, major blood vessels, internal inguinal ring and the muscle lining the pelvic cavity. These results agree with by Kawamoto et al., 2023 who mentioned that 10 mm initial laparoscopic portal with to sided 5 mm portal in the pre-inguinal provided good panoramic and close up view of the pelvic and abdominal cavity. They added that these portals allow satisfactory orientation and easier manipulation of the instrument.

5. CONCLUSIONS

Laparoscopy could be a useful teaching aid for students and surgeons, facilitating better understand of anatomy and developing of surgical skills. It is necessary to expand the use of laparoscope because of its many exploratory, diagnostic advantages and to perform many surgical interventions without the problems of standard surgical technique. The use of an anesthetic protocol consists of xylazine HCl at a dose of 0.05mg/kg b.wt, ketamine HCl at a dose of 3.5 mg/kg b.wt and propofol by a dose rate 2.5 mg/kg b.wt, fully satisfied the purpose of laparoscopic intervention in goats in terms of duration of anesthesia, the competence of entry into anesthesia as well as the quality of recovery.

ACKNOWLEDGMENT

The article was achieved by cooperation with Egyptian Society for Minimally Invasive Surgery. The target of this Society is practical personal training on laparoscopic skills.
6. REFERENCES

