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ARTICLE INFO ABSTRACT 

Keywords 

 
  Many of Kaempferol’s (KAE) biological functions have been widely investigated. However, 

its role in animal reproduction still needs great attention and exploration, especially in assisted 

reproductive techniques, due to its promising mechanisms in modulating oxidative stress. The 

current study aimed to explore its roles in maintaining the redox hemostasis of buffalo oocytes 
that matured in vitro in the presence of different KAE concentrations (0,5,10 and 15 µg/ml). 

The current study revealed for the first time that KAE at ten µg/ml has great capability to 

scavenge the generated free radicals such as H2O2 (26.4±2.27 ng/ml) and nitric oxide 
(25.9±2.63 nmol/L). Moreover, it significantly attenuates the rate of lipid peroxidation 

(1.77±0.17 nmol/L) in buffalo oocytes matured in vitro. Firstly, by enhancing the scavenging 

mechanisms. Secondly, by increasing the intrinsic antioxidants, enzymes synthesis such as 
super oxide dismutase (SOD) (33.70±2.96 U/ml) and glutathione (GSH) (5.51±0.37 nmol/l). 

Additionally, the current results revealed that KAE can protect the oocyte mitochondria from 

apoptosis by increasing the intra-mitochondrial antioxidants such as SOD (4.46±0.21 
nmol/mg) which prevents mitochondrial dysfunction. In conclusion, KAE addition to the in 

vitro maturation media of buffalo oocytes significantly ameliorates its developmental 

competence by increasing its quality and developmental potentials as a whole, controlling the 
redox hemostasis by scavenging actions as well as by enhancing the production of intrinsic 

antioxidant enzymes, and finally by protecting the mitochondrial functions. 
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1. INTRODUCTION 

 
Exposure of oocytes to in vitro conditions could generate a 

high level of ROS, which could have effects on antioxidant 

enzymes such as glutathione (GSH) and/or damage 

mitochondria, leading to poor oocyte quality (Chappel, 

2013; Succu et al., 2014).  So, antioxidants must be added to 

counteract the negative effects of oxidative stress (Khan et 

al., 2018). Exogenous antioxidants primarily work to 

strengthen the intrinsic antioxidant system or scavenge free 

radicals to protect cells (Liao et al., 2016). Recently, there 

has been a surge in interest in Kaempferol's (KAE) 

antioxidant potential (Han et al., 2018). Malondialdehyde 

(MDA), a measure of lipid peroxidation that affects the 

integrity of cell membranes (Ayala et al., 2014), was 

demonstrated to be produced at lower levels when KAE was 

added in vitro (Jamalan et al., 2016; EL-Raey and Azab, 

2022). Kaempferol can produce its antioxidant effects by 

reducing lipid peroxidation and enhancing the production or 

activity of antioxidant enzymes like catalase (CAT), heme-

oxygenase (HO), and glutathione (GSH) (Zhou et al., 2015; 

EL-Raey and Azab, 2022). GSH is a powerful intracellular 

ROS scavenger that is important in protecting cells against 

oxidative stress (EL-Raey and Azab, 2022).  

Choi (2011) documented that (KAE) directly affects 

mitochondria by enhancing SOD synthesis and activating the 

mitochondrial thioredoxin reductase (TrxR) pathway. This 

TrxR system is crucial for cell viability and for maintaining 

the redox equilibrium of cellular thiol (Myers and Myers, 

2009). Thus, oxidative stress can proceed into cell death as a 

result of TrxR system malfunction (Choi, 2011). According 

to Yao et al. (2019b), KAE maintains and improves 

mitochondrial function; hence, it can alleviate mitochondrial 

membrane potential that has been impaired by oxidative 

stress (OS) leading to a sufficient production of energy and 

aid in the promotion of early embryonic development. KAE 

considerably lowers DNA damage and attenuates the 

decrease in mitochondrial membrane potential in oocytes 

that have been exposed to H2O2 (Yao et al., 2019b). KAE 

has been shown to reduce H2O2-induced oxidative stress by 

raising levels of nuclear 2-related factor antioxidant-related 

element (Nrf2), SOD, and catalase (Kumar et al., 2016). 

Superoxide anion, one of the ROS generates by the reduction 
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of O2, which dismutates into H2O2 by SOD. Later, H2O2 was 

detoxified into water molecules by CAT and glutathione 

peroxidase (Liao et al., 2016). Glutathione donates electrons 

to H2O2 and converts to its oxidized form, glutathione 

disulfide (GSSG). GSSG can be reduced back to GSH by 

glutathione reductase (GR). This process is one of the most 

essential antioxidative defense mechanisms, known as 

glutathione metabolism (Liao et al., 2016). The current study 

aims to explore the KAE effect on the antioxidant capacity 

of in vitro matured buffalo oocytes.  

 

2. MATERIAL AND METHODS 

 
Unless otherwise stated, all chemicals and reagents were 

purchased from Sigma-Aldrich (Sigma-Aldrich, St. Louis, 

MO, USA). 

Approval Ethics 

The experimental procedures adopted in the current study 

were authorized by the Faculty of Veterinary Medicine, 

Benha University, Egypt (institutional review board for 

animal experiments) which provided the current study its 

ethical approval number (BUFVTM 27-06-23).  

 

2.1. Oocyte recovery and maturation protocol 

 

Buffalo ovaries from slaughtered houses were transported in 

a sterile Dulbecco’s phosphate buffered saline (D-PBS) 

supplemented with 100 lU/mL penicillin and 100 μg/mL 

streptomycin sulfate at 25-30 °C. At the laboratory, they 

were washed in a sterile D-PBS several times, then finally 

washed in a sterile warm normal saline. Follicles ranging in 

size between 4-8mm were chosen to aspirate the qualified 

cumulus-oocyte complex (COCs) using an 18-gauge needle 

(Yousaf and Chohan, 2003). The aspirate was left warm at 

(35-37°C) for 15 minutes until the settlement of the aspirated 

COCs. The sediment was recovered in a new sterile Falcon 

petri dish where evenly granulated homogenous oocytes that 

were surrounded with several layers (≥4 layers) of compact, 

granular, and homogenous cumulus (granulosa) cells were 

selected to conduct the current experiment. In a sterile 

warmed D-PBS, the selected COCs were washed three times 

in fresh pre-warmed TCM-199 and then cultured in TCM-

199 that was enhanced with 10% FCS, ten µg/ml LH, five 

µg/ml FSH, one µg/ml estradiol, 2.2 mg/ml sodium 

pyruvate, 100 mg/ml of streptomycin, and 100 IU/ml of 

penicillin. In a disposable Falcon© petri dish, the maturation 

media was prepared by pouring 100µL of media/well, 

covered with sterile paraffine oil, and then incubated at 38.5 

°C/ 5% CO2, with 90-95% humidity/ 1h before use. In all 

experiments, Kaempferol (K0133, Pub Chem SID 

24896195) was supplemented to the in vitro maturation 

(IVM) media at 0 (Control), 5, 10, or 15 µg/ml. The selected 

COCs were matured in definite groups according to the 

different Kaempferol concentrations at a rate of 10-15 

oocytes /well/group using 100µl of the in vitro maturation 

medium for 22 h. at 5% CO2, 38.5°C in complete humidified 

air (Gasparrini et al., 2008). 

 

2.2. Oxidant and antioxidant parameters estimation 

2.2.1. Superoxide dismutase concentration (U/ml) 

 

According to the manufacturing procedures of Labtest 

Diagnóstica S.A., Brazil, SOD was determined using a 

Fructosamine Vet Assay Kit (1019). The absorbance rate 

was measured calorimetrically at 530 nm.  

2.2.2. Hydrogen peroxide (H2O2) assay (ng/ml) 

 

Cayman’s hydrogen peroxide assay Kit (Ann Arbor, MI, 

USA-600050) provides a simple method for the sensitive 

quantitation of extracellular H2O2 produced by cultured 

cells. H2O2 in the tested samples was measured 

calorimetrically at 550 nm optical density according to 

manufacturing procedures. 

 

2.2.3. Glutathione concentration (GSH) 

 

GSH concentration in the tested samples was measured 

according to Ellman (1959) and Hu (1994). The absorbance 

rate was estimated at 412 nm (Costa et al., 2006). The 

concentration of sulfhydryl groups was calculated using 

glutathione standards, and the results were reported as 

nmol/l. 

 

2.2.4. Malondialdehyde concentration (nmol/L) 

 

Malondialdehyde concentration was determined by mixing 

1 ml of the tested sample with 2 ml of TCA-TBA-HCL (15% 

trichloroacetic acid, 0.375% Thiobarbituric acid, 0.25N 

hydrochloric acid), the mixture was heated in a water bath 

(100 °C/15 min). The solution was left to cool at room 

temperature to give the precipitate, which was centrifugated 

at 1,000 ×g /10 min. The supernatant absorbance was 

spectrophotometrically measured at 535 nm using the 

Spectronic 601 reader (Milton Roy). The concentration of 

Thiobarbituric acid-reactive substances (TBARS) was 

calculated based on the coefficient of molar absorptivity of 

the product (E535 = 1.56 × 10 −5 M −1 cm −1), and the 

results were reported as nmol/L. The standard curve was 

obtained using the stock solution of 10 mM 

malondialdehyde prepared from tetramethoxypropane 

(Sigma-Aldrich). The concentrations of MDA in the tested 

samples should show good linearity with the standard.  

 

2.2.5. Nitric oxide (NO) measurement (nmol/L) 

 

NO was measured by measuring the total nitrite and nitrate 

concentrations in the tested samples using the Griess method 

that was described by Archer (1993). The absorbance was 

measured at 545 nm. 

 

2.2.6. Assessment of mitochondrial SOD production by the  

 

A microtiter plate assay for superoxide using the MTT 

reduction method (MTT test) according to Madesh and 

Balasubramanian (1997). 

 MTT assay has been used as a common tool to measure cell 

proliferation/viability, drug cytotoxicity, and 

mitochondrial/metabolic activity of cells (Lee et al., 2014). 

MTT-derived formazan is usually measured at 570 nm.  

 

2.3. Statistical Analysis 

 

One-way ANOVA was statistically applied to the current  

data using Graph Pad Prism software version 8.4 (Graph Pad 

Prism, San Diego, CA) to determine the degree of 

significance between the kaempferol-treated groups. 

Duncan’s Multiple Range test (LSD) using Costat Computer 

Program (1986) was used to compare means. The difference 

was considered significant at (P<0.01) and this was denoted 

by superscripted letters. 
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3. RESULTS 

 
Table 1 shows a highly significant difference at (P < 0.01) 

between the different KAE-treated groups of buffalo oocytes 

concerning H2O2 and NO generation levels after in vitro 

maturation process. Where it was clear that 10µg/ml of 

KAE-treated oocyte group presented the lowest H2O2 and 

NO levels (26.40±2.27 ng/ml and 25.9±2.63 nmol/L, 

respectively), especially if compared with control which 

shows the highest records (39.90±1.88 ng/ml and 37.0±2.45 

nmol/L, respectively), followed by 15µg/ml (32.90±2.08 

ng/ml and 35.0±1.99 nmol/L, respectively), and 5µg/ml 

(34.60±2.58  ng/ml and 33.0±0.16 nmol/L, respectively). 

Moreover, Table 1 shows a highly significant difference at 

(P<0.01) between the different KAE-treated oocytes 

concerning the MDA level. Where KAE at 5µg/ml and 

10µg/ml concentrations efficiently reduced the rate of MDA 

in buffalo oocytes (2.75±0.08 nmol/L and 1.77±0.17 

nmol/L, respectively), especially if compared with control 

(4.01±0.29 nmol/L), and 15µg/ml KAE-treated group 

(3.15±0.14 nmol/L). Furthermore, it was clear from the rate 

of differences in Table 1 between H2O2, NO, and MDA that 

KAE was more effective in protecting buffalo oocytes from 

the hazardous effects of the reactive oxygen species (ROS) 

by combating the lipid peroxidation cascades in the oocytes 

during the maturation process. 
Table 1 The effect of different Kaempferol concentrations on hydrogen 

peroxide (H2O2), Nitric Oxide, and Malondialdehyde (MDA) generation 

potentials in the in vitro matured buffalo oocytes. 

 
MDA 

nmol/L 

Nitric Oxide 

nmol/L 

H2O2 

ng/ml 

Control  4.01±0.29a 37.0±2.45a 39.9±1.88a 

5 μg/ml 2.75±0.08b 33.0±0.16ab 34.6±2.58ab 

10 μg/ml 1.77±0.17c 25.9±2.63b 26.4±2.27b 

15 μg/ml 3.15±0.14ab 35.0±1.99ab 32.9±2.08ab 

P value .0002 .0136 .0168 

Results of each group were stated as mean ± SEM. 

The experiment was replicated three times /group. 

Means with different alphabetical superscript letters in the same column 

were statistically significant at P<0.01. 

Table 2 shows that there was a highly significant difference 

at (P<0.01) between the different KAE-treated oocytes 

concerning SOD, GSH synthesis level, and intra-

mitochondrial synthesis level of SOD. Where, when 

10µg/ml of KAE was added to the maturation media of 

buffalo oocytes efficiently enhanced the production of the 

intrinsic antioxidant enzymes SOD and GSH (33.70±2.96 

U/ml and 5.51±0.37 nmol/l, respectively), followed by 5 

μg/ml (22.00±1.79 U/ml and 3.20±0.26 nmol/l, 

respectively). While control (16.50±1.92 U/ml and 

2.93±0.06 nmol/l, respectively), and 15 μg/ml treated group 

(15.10±1.10 U/ml and 2.59±0.29 nmol/l, respectively) 

presented the lowest values of their intrinsic enzymes. 

Furthermore, 10µg/ml of KAE efficiently improved the rate 

of mitochondrial SOD production (4.46±0.21 nmol/mg), 

followed by 5 μg/ml treated group (3.29±0.24 nmol/mg). 

While, the control (2.32±0.17 nmol/mg), and 15 μg/ml 

KAE-treated oocyte group (2.41±0.11 nmol/mg) showed the 

lowest level of mitochondrial SOD production. 

Additionally, from Table 2 it was clear that KAE 

supplementation to the in vitro maturation media of buffalo 

oocytes acts significantly to enhance the production and 

function of the intrinsic antioxidant enzymes (SOD and 

GSH) not only on the oocyte ooplasm level but also on the 

mitochondrial level. 

Table 2 The Effect of different Kaempferol concentrations on cytoplasmic 

and mitochondrial intrinsic antioxidants enzymes (SOD and GSH) production 

potentials in the in vitro matured buffalo oocytes. 

 SOD 

U/ml 

GSH 

nmol/l 

MTT 

nmol/mg 

Control  16.50±1.92b 2.93±0.06b 2.32±0.17b 

5 μg/ml 22.00±1.79b 3.20±0.26b 3.29±0.24b 

10 μg/ml 33.70±2.96a 5.51±0.37a 4.46±0.21a 

15 μg/ml 15.10±1.10b 2.59±0.29b 2.41±0.11b 

P value .0008 .0003 .0007 

• Results of each group were stated as mean ± SEM. 

• The experiment was replicated three times /group. 

• Means with different alphabetical superscript letters in the same column 

were statistically significant at P<0.01. 

 

4. DISCUSSION 

 
Kaempferol is one of the most common natural flavonoids, 

it was extracted from various fruits and plants (Holland et 

al., 2020). Recently such flavonoid was found to exert a lot 

of biological, biochemical, and pharmacological roles and 

activities in modulating cellular health and functions 

(Periferakis et al., 2022, Yang et al., 2022, Almatroudi et al., 

2023, Dong et al., 2023). Lately, KAE gained great interest 

to be used during in vitro embryo production technology. To 

our knowledge, the current study is the first report that 

explored KAE effects on the redox state of buffalo oocytes 

that matured in vitro. The current study revealed for the first 

time that KAE supplementation to IVM media at 10 µg/ml 

significantly scavenged the free radicals especially H2O2 

(26.4±2.27 ng/ml), and Nitric Oxide (25.9±2.63nmol/l). The 

current results came in harmony with Middleton et al. 

(2000), Kampkötter et al. (2007), and Yao et al. (2019a) who 

reported that KAE is a pioneer ROS scavenger especially 

superoxide due to its unique chemical structure which 

possesses the ability to inhibit xanthine oxidase activity and 

so scavenge superoxide. H2O2 negatively affects cellular 

viability by destroying the cytoplasmic membrane and 

distributing cellular homeostasis (Kagan and Li, 2003). 

The current study for the first time clarified the potent effects 

of KAE on the rate of lipid peroxidation where it has been 

discovered that 10 µg/ml potentially reduced the rate of 

MDA production (1.77±0.17 nmol/L) thus protecting the 

cytoplasmic membrane of buffalo oocytes that were rich in 

polyunsaturated fatty acids (PUFAs). The current results 

came in harmony with Nirmala and Ramanathan (2011), 

Kulanthaivel et al. (2012), and El-Raey and Azab (2022), 

who stated that the rate of lipid peroxides synthesis 

significantly decreased when KAE was used. On the other 

hand, Lee et al. (2010), and El-Raey and Azab (2022), 

reported that KAE alleviates ROS generation and 

accumulation partially.  

The current study revealed that KAE can control the redox 

homeostasis of buffalo oocytes in two ways: the first is by 

scavenging the generated ROS (H2O2 and Nitric oxide), 

protecting the cellular membrane from disintegration, and 

consequently protecting the intracellular constituents from 

loss and maintaining the normal biological functions of the 

matured oocytes in vitro. The second mechanism is 

illuminating as it proves clearly how KAE is a promising 

natural flavonoid that could be used efficiently to enhance 

the in vitro embryo production technology, where the current 

study discovered that KAE at 10 µg/ml can significantly 

enhance the intrinsic antioxidant enzymes of the buffalo 

oocytes that matured in vitro, especially SOD (33.70±2.96 

U/ml) and GSH (5.51±0.37nmol/l). The current result came 

in harmony with Kim et al. (2008a), Kim et al. (2008b), 

Kumar et al. (2016), and El-Raey and Azab (2022) who 
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stated that KAE could relieve H2O2‐induced oxidative stress 

by increasing the levels of SOD, and catalase that 

significantly reduced ROS. Moreover, Hong et al. (2009) 

reported that KAE upregulates Nrf2‐mediated HO‐1 

expression. Furthermore, Zhao et al. (2020) and El-Raey and 

Azab (2022) stated that KAE significantly increased the rate 

of GSH synthesis, which increased the quality of the oocytes 

and sperms by increasing their ability to resist oxidative 

stress.   

Concerning the role of KAE on the mitochondrial function 

of buffalo oocytes that matured in vitro, the current study 

and for the first time revealed that KAE supplementation to 

IVM of buffalo oocytes enhanced the mitochondrial SOD 

production, especially at 10µg/ml (4.46±0.21 nmol/mg) 

which in turn preventing the mitochondrial dysfunction. the 

current study results came in agreement with Choi (2011), 

Chen et al. (2018), Yao et al. (2019a), and Yao et al. (2019b) 

who documented that KAE supplementation to the IVM and 

IVC media of the aged oocytes and embryos significantly 

enhanced their quality by improving the mitochondrial 

membrane potential (Δψm) so retarding the process of 

mitochondrial dysfunction and reducing apoptosis process. 

Maintaining healthy MMP is an essential request to provide 

a sufficient energy supply that promotes early embryo 

development and DNA damage (Ott et al., 2007). Moreover, 

Yang et al. (2019) stated that KAE can regulate the 

mitochondrial Sirtuin (Sirt-3); which is essentially important 

in regulating the different cellular hemostasis, especially 

redox homeostasis, and aging process (Cimen et al., 2010). 

Additionally, Saw et al. (2014) and Zhang et al. (2019) 

illustrated another mechanism by which KAE can enhance 

mitochondrial activity by finding the synergistic relationship 

between it and the Nrf2-ARE pathway, which is necessary 

to regulate the mitochondrial function, therefore KAE could 

reduce the mitochondrial dysfunction and apoptosis. In 

addition, Guo et al. (2015) reported that KAE attenuated the 

loss of mitochondrial membrane potential (Δψm) and 

modulated the release of cytochrome-c (cyt-c).  

 

5. CONCLUSIONS 

 
Finally, supplementation of KAE to IVM media of buffalo 

oocytes especially at 10 µg/ml significantly improved its 

developmental competence firstly by improving the oocyte 

and embryo developmental quality (Bahgat et al., 2023);  as 

well as by modulating the redox homeostasis of buffalo 

oocyte either by the scavenging the generated free radical 

species (ROS) and by enhancing the intrinsic antioxidant 

enzymes synthesis (SOD and GSH), besides it protecting the 

healthy potentials of the oocyte mitochondria, which in turn 

improving the embryo yield from in vitro embryo production 

techniques. 
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