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ARTICLE INFO ABSTRACT 

Keywords   Studies regarding nicotine-related lung toxic effects are contradictory and limited. This study 

aimed to evaluate the nicotine toxic effect on the lung tissues of rats in the light of increased 

lipid peroxidation (MDA), disrupted antioxidants (GPx, GSH), elevated pro-inflammatory 

cytokines (TNF-α, NF-κB), and an inflammatory-mediated enzyme (Caspase-1). Twenty rats 

were divided into two groups: group I control and group II rats injected intraperitoneally with 
nicotine. After the experiment, nicotine injection significantly elevated (P<0.0001) MDA 

levels and, conversely, caused a significant reduction in antioxidant (GPx activity and GSH) 
pulmonary levels. Also, there was remarkably upregulated NF-κB mRNA expression (8.34-

fold increase) in the lung tissues associated with nicotine injection. Also, the pro-inflammatory 

cytokine Tumer Necrosis Factor (TNF-α) and inflammatory-mediated enzyme Caspase-1 are 
significantly elevated. Therefore, it was concluded that nicotine has toxic effects on lung tissues 

as it elevates lipid peroxidation, increases pulmonary oxidative and inflammatory toxicity and 

abolishes antioxidant capacity.. 
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1. INTRODUCTION 
 

According to the World Health Organization (WHO), 

tobacco smoking is one of the main causes of mortality and 

is significantly linked to poor health outcomes and a shorter 

lifespan (Khaled et al., 2020; Wahbeh et al., 2024). 

According to Wahbeh et al. (2024), smoking prevalence will 

surpass 30% in 2025, despite efforts made worldwide to 

reduce tobacco use. When absorbed into the bloodstream, 

nicotine, the main tobacco alkaloid, is linked to damage to 

the liver and lungs (Moghbel et al., 2017; Khaled et al., 

2020)  . 

Numerous studies have shown that tobacco and nicotine 

increase the induction of oxidative stress status and lower 

the antioxidant defense mechanism when compared to 

nonsmokers (Ahmadkhaniha et al., 2021). Oxidative 

damage to DNA, lipids, and proteins results from the 

generation of reactive oxygen species (ROS) linked to 

nicotine beyond the ability and capacity of the antioxidant 

defense mechanism (Caliri et al., 2021). Many proteins and 

enzymes, including CAT, SOD, GR, GPx, and GSH, can be 

disrupted by ROS when they react with polyunsaturated 

fatty acids (lipid oxidation) in cell membranes. (Juan et al., 

2021; Endale et al., 2023). Nicotinamide adenine 

dinucleotide phosphate-oxidase (NADPH oxidase/NOX) 

may be activated to induce ROS in nicotine (Shen et al., 

2019; Seo et al., 2023). Additionally, an increase in DNA 

damage and protein and gene regulation leading to cancer, 

apoptosis, and inflammation is caused by lipid oxidation-

induced oxidant/antioxidant imbalance (Aslan et al., 2023). 

In general, exposure to nicotine causes immunological and 

epithelial cells in the lung and upper airway to produce pro-

inflammatory cytokines, such as interleukins and tumor 

necrosis factor-alpha (TNF-α) (Matsumoto et al., 2020; Park 

et al., 2022)  . 

 

Across studies, specific neutrophil signal patterns have been 

demonstrated and nicotine exposure was reported to activate 

neutrophils by the action of some enzymes (Reidel et al., 

2018). Thus, nicotine has a direct role in many processes 

related to lung inflammation, including cytokine production 

(Hamza and El-Shenawy, 2017) . 

The overall goal of this research was to assess how nicotine 

affects lung inflammation and damage in the context of 

elevated lipid peroxidation (malondialdehyde (MDA)), 

disrupted antioxidant activity (GPx, GSH), increased pro-

inflammatory cytokines (TNF-α, NF-κB), and 

inflammatory-mediated enzymes (Caspase-1). 

 

2 .MATERIAL AND METHODS 

 

2.1 .Materials 

Nicotine (CAT: NI00200100, Scharlau, Scharlab S.L 

Barcelona, Spain) was commercially obtained . 

 

2.2 .Ethics statement   
The study protocol was approved by the Institutional Animal 

Care and Use Committee Research Ethics, Faculty of 

Veterinary Medicine, Benha University (BUFVTM12-11-

22) . 

 

2.3 .Animals and experimental design   
In hygienic cages at a temperature of 22 ± 2 ◦C, male rats 

(100–120 g) were housed and collected from the Nile 

Company for Pharmaceuticals & Chemical Industries, 

Egypt. Animals were given unrestricted access to potable 

water, a commercial pellet diet and a consistent 12-hour 

light/dark cycle. Rats in the experimental groups were 

distributed to two experimental groups (10 rats/group). 

Control group: normal rats were received orally; normal 

saline served as the control; Nicotine group: rats were 
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intraperitoneally treated with nicotine (1 mg/kg/day) 

according to Okada and Matsuo (2023) for 3 weeks . 

 

2.4 .Sample collection 

At the end of the experiment, all rats were sacrificed with 

urethane anaesthesia (1.3–1.5 g/kg in a~1.5 g/ 5 mL 

solution) according to (Field et al., 1993) and, by puncture 

of the heart, blood samples (about 5 mL) were collected. 

Lung tissue specimens were fixed in formol saline (10%), 

trimmed off, washed, and dehydrated in alcohol ascending 

grades. 

 

2.5 .Biochemical measurements 

Commercial biochemical kits (Bio-Diagnostic Company, 

Cairo, Egypt) were used to measure MDA levels (Kie, 

1978), as well as antioxidant parameters GSH (Beutler et al., 

1963) and GPx (Paglia and Valentine, 1967) procured from. 

Also, according to the manufacturer’s guidelines, lung tissue 

levels of TNF-α (Cat#MBS924824) and caspase-1 

(Cat#MBS2019421) were obtained by commercial ELISA 

kits from My BioSource, San Diego, USA (Trevejo, et al., 

2001)  . 

 

2.6 .NF-κB relative gene expression 

 

To find NF-κB mRNA expression, total RNA was taken 

from lung tissues using a purification kit (#K0731, Thermo 

Scientific, Fermentas, USA). After that, complementary 

DNA (cDNA) was obtained using reverse transcription kits 

(#EP0451, Thermo Scientific, Fermentas, USA). 

Quantitative real-time PCR (RT-PCR) was established using 

a Step OnePlus thermal cycler (Applied Biosystems, Life 

Technology, USA) and SYBR Green PCR Master Mix (# 

K0221, Thermo Scientific, USA). To normalize NF-κB 

expression, β-actin was used as an internal reference. β-actin 

is one of the most commonly used reference genes because 

it has more stable expression levels compared with other 

internal controls (Biederman et al., 2004). Relative mRNA 

expression was calculated using the 2−ΔΔCt method (Livak 

and Schmittgen, 2001). The used primers were as follow:

 

2.7. Statistical analysis 

GraphPad Prism 8 (GraphPad, San Diego, CA, USA) was 

used to produce various charts, and SPSS 20 (SPSS Inc., 

USA) was used to analyze the data. The means and standard 

error of the mean (SEM) were used to express the results. 

Using the student t test, several comparisons between groups 

were evaluated. P ≤ 0.0001 indicated significance. 

 

3. RESULTS 

 

3.1. Effect on redox status 

Nicotine effect on lipid peroxidation and redox status 

impairment was evaluated by measuring the lung tissue 

contents of MDA, GPx activity, and GSH. As shown in 

Table 1, nicotine injection significantly elevates ROS levels 

and causes a marked (P<0.0001) increase in MDA (Fig. 1A) 

and a reduction in GPx activity (Fig. 1B) and GSH (Fig. 1C) 

pulmonary levels. This suggests that the cell eliminated its 

antioxidant capacity and caused pulmonary oxidative 

toxicity. 

 

3.2. Impact on the inflammatory markers 

The NF-kB signaling pathway is crucial for controlling 

cellular redox balance and the inflammatory response. In this 

study, NF-κB mRNA expression was significantly increased 

(8.34-fold) in the lungs of rats that were given nicotine 

(Table 1, Fig. 2). Also, nicotine injection was associated 

with a significant elevation of the pro-inflammatory 

cytokine TNF-α (Fig. 3A) and the inflammatory-mediated 

enzyme Caspase-1 (Fig. 3B). 

 

 
Table 1. Effect of nicotine exposure on oxidative stress and inflammation associated markers 

Variable Controls Nicotine exposed rats P value 

MDA (nMole/g tissues) 18.88 ± 0.85 128.04 ± 5.84 0.0001 

GPx (U/g tissues) 137.26 ± 5.29 55.63 ± 2.05 0.0001 

GSH (mg/g tissues) 62.10 ± 3.10 17.20 ± 0.51 0.0001 

TNF-α (pg/g tissues) 319.29 ± 15.64 1210.7 ± 33.45 0.0001 

Caspase-1 (ng/g tissues) 5.60 ± 0.20 14.0 ± 1.02 0.0001 

NF-kB (Fold-increase) 1.0±0.0 8.34±0.36 0.0001 

  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Impact of nicotine on lipid peroxidation and antioxidant parameters. 

Nicotine injection significantly elevated (A) MDA levels and decreased both 

pulmonary (B) GPx activity and (C) GSH levels. Values were expressed as 

mean ± SEM.  

 

 

 

 

 

Figure 2. Fold change in 

NF-κB expression between rats treated with nicotine and control rats. 

 
Figure 3. Effect of nicotine on lung tissues inflammatory markers. Nicotine 

injection significantly increase (A) TNF-α and (B) Caspase-1 lung levels. 

Values were expressed as mean ± SEM.  

 

 

Gene 3)/ ------5 /Forward primer ( 3)/ ------5 /Reverse primer ( 

NF-κB CCTAGCTTTCTCTGAACTGCAAA GGGTCAGAGGCCAATAGAGA 

B-actin AAGTCCCTCACCCTCCCAAAAG AAGCAATGCTGTCACCTTCCC 
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4. DISCUSSION 

 
Compounds and hazardous substances that cause 

intracellular oxidative stress are considered to be major 

agents that cause damage to biological molecules 

(Olufunmilayo et al., 2023). Initially, tobacco was distilled 

to extract nicotine, which was then given to treat ulcers and 

constipation in rodents (Barr et al., 2007). Later, it was 

realized that it was toxic to humans (Mishra et al., 2015; 

Chioran et al., 2022). Reports on nicotine-related toxic 

effects are contradictory and limited (Xu et al., 2023). For 

example, some research has discovered that nicotine is not 

the cause of DNA changes brought on by tobacco use 

(Mizusaki et al., 1977), and that nicotine and its metabolites 

have no genotoxic effects (Doolittle et al., 1995). As a result, 

research on nicotine toxicity, the main alkaloid found in 

tobacco and cigarette smoke, is very thorough (Barr et al., 

2007). In the present study, we address nicotine toxic 

impacts in lung tissues in light of lipid peroxidation 

indicated by MDA levels, impairment of antioxidants (GPx, 

GSH), activation of NF-κB signaling pathway and induction 

of inflammatory markers (TNF-α, Caspase-1) in rats injected 

with nicotine. 

The obtained findings in this study revealed that nicotine 

injection significantly (P < 0.00001) triggered pulmonary 

oxidative stress, causing enhanced lipid peroxidation 

(evidenced by high MDA pulmonary values) and impaired 

redox status (indicated by a reduction in activities of 

pulmonary GPx and GSH). Nicotine exposure has been 

shown to induce oxidative stress and inflammation in 

alveolar cells, which can compromise surfactant synthesis 

and decrease regeneration potential (Cha et al., 2023). The 

generation of ROS is one of the primary mechanisms that 

connects cigarette smoking to lung ageing (Morsch et al., 

2019). According to Cha et al. (2023), the metabolism of 

nicotine and other harmful components of cigarette smoke 

produces ROS, which in turn causes oxidative stress in lung 

cells. Elevated ROS have the potential to harm cellular 

constituents, including proteins, lipids, and DNA, ultimately 

leading to oxidative stress, malfunction, and death of the cell 

(Su et al., 2019). When GPx, GSH, CAT, and SOD levels 

were compared to the control. in a study conducted by 

Oyeyipo et al., (2014), the effects of nicotine on serum 

antioxidant levels revealed a substantial drop in the nicotine 

group. Conversely, they found that MDA was significantly 

elevated (Oyeyipo et al., 2014). Mahmoud et al. (2021) 

examined the impact of nicotine on oxidative stress 

indicators in the lungs of rats, which is also consistent with 

our findings. They discovered that, in comparison to a 

control, eight weeks of consecutive nicotine injections 

significantly increased oxidative stress in lung tissues. 

Apart from oxidative stress, exposure to nicotine may also 

trigger inflammation in the lungs by elevating levels of pro-

inflammatory cytokines, including TNF-α (Cha et al., 2023). 

NF-κB is an inducible transcription factor found in neurons 

that has been linked to several biological processes, 

including development, innate immunity, antiapoptosis, and 

inflammation (Widera et al., 2006). Here, there was a 

remarkable upregulation in NF-κB mRNA expression (8.34-

fold increase) in the lung tissues of rats injected with 

nicotine. Also, nicotine injection was associated with a 

significant elevation of the pro-inflammatory cytokine TNF-

α and the inflammatory-mediated enzyme Caspase-1. 

The NF-kB signaling pathway is crucial for controlling 

cellular redox balance and the inflammatory response. 

Nicotine exposure was reported to cause activation of airway 

epithelial cells and alveolar macrophages that released pro-

inflammatory cytokines and infiltrated the lungs by 

inflammatory cells (Lugg et al., 2022; Cha et al., 2023). 

Many studies have demonstrated that nicotine exposure 

induces oxidative stress, and inflammation and activates NF-

κB via the ROS/NF-κB signaling pathway (Barr et al., 2007; 

Wang et al., 2019; AlQasrawi et al., 2021). Moreover, the 

interaction between activated NF-κB and forkhead box O1 

(FOXO1) provoked pro-inflammatory mediator production 

such as NLRP3, which in turn enhanced caspase-1 activation 

and eventually mediated pulmonary injury (Wu et al., 2019). 

Zhong et al. (2008) discovered that exposure to tobacco 

smoke activated initiator caspases for the mitochondrial 

pathway (caspase 9), the death receptor pathway (caspase 8), 

and effector caspase 3. 

TNF-α, as a pro-inflammatory cytokine, may play an 

important role in the nicotine-associated inflammatory 

response. Liu et al. (2017) results suggested that nicotine 

aggravates cardiovascular effects, including inflammation, 

oxidative stress, and endothelial dysfunction, by targeting 

the endothelium through the enhancement of macrophage-

produced TNF-α (Liu et al., 2017). Similarly, Wang et al. 

(2004) found that in human endothelial cells, nicotine could 

augment adhesion molecule expression via macrophages 

producing TNF-α.  

 

5. CONCLUSIONS 

 
Our study demonstrated that nicotine could augment lung 

injury through aggravating lipid peroxidation, imbalance of 

redox status, antioxidant defense system impairment, 

enhancing pulmonary inflammation, and pro-inflammatory 

cytokine production. 
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