Phenotypic and genotypic characterization of listeria species isolated from chicken and milk products

¹Ashraf, A. Abd El Tawab, ²Wafaa, M. M Hassan, ³Fatma, I. E. Hofy, ⁴Haidy, T. Zaki

¹Bacteriology, Immunology and Mycology Dep., Fac. Vet. Med. Benha Univ. ²Animal Health Research

ABSTRACT

Listeria monocytogenes has became increasingly important as a food-associated pathogen. It can cause a rare but serious disease called listeriosis with high fatality rates (20–30%) compared with other foodborne microbial pathogens. To estimate the incidence and levels of Listeria spp. in different food sources, a total of 200 random samples which collected from different sources 65 samples isolated from poultry, 45 from poultry byproducts (Frozen chicken meat balls (kofta), Frozen chicken burger and frozen chicken sausages), 20 from pasteurized milk, 30 from milk products (Feta cheese, cream cheese) and 40 from poultry eggs. Only 7 (14%) of samples that collected from suspected isolates and detected on Oxford agar, PALCAM agar and ALOA agar were suspected to be Listeria spp. In poultry, poultry byproducts, pasteurized milk, milk byproducts and poultry eggs, listeria percentage were 0/65 (0%), 4/45 (1.8%), 0/20 (0%), 0/30 (0%) and 3/40 (1.2%) isolates, respectively. The in-vitro antimicrobial sensitivity test showed that the isolated L. monocytogenes were sensitive to Sulphamethoxazole/trimethoprim, Gentamycin, Ceftazidime and Cephazoline followed by Sulphamethoxazole, ceftriaxone, weak sensitivity to Penicillin. While they were resistant to Erythromycin, Clindamycin, Ampicillin. The results of virulence tests for isolated listeria strains appeared that all of L. monocytogenes were virulent strains as all of them were positive to CAMP test; showed narrow zone of β-hemolysis on sheep blood agar. The PCR results for Listeria isolates showed that all strains are L. monocytogenes and have InlA and hlyA genes positive as virulence genes while negative InlB, iap and prfA genes.

Keywords: L. monocytogenes, poultry, milk.

1. INTRODUCTION

Veterinarians, medical doctors and people involved in food science know listeriosis by various names (circling disease, meningioencephalitis disease, cheese sickness) but few know who Gustav Hülphers was because he did not preserve his bacterial strains, which he named bacillus hepatis, later recognized as Listeria monocytogenes (McLauchlin, 2004 & Hülphers, 2004).

Listeria monocytogenes is a Gram-positive rod-shaped non-capsulated bacterium that form single short chains (Theivagt et al., 2006), facultative anaerobic, non-spore-forming, rod-shaped bacteria 0.5 mm in width and 1–1.5 mm in length (Vazquez-Boland et al., 2001 and Vera et al., 2013).

Taxonomically, it is divided into six species (i.e. Listeria monocytogenes, Listeria ivanovii, Listeria seeligeri, Listeria innocua,
Listeria welshimeri and *Listeria grayi*, of which only *L. monocytogenes* and *L. ivanovii* are pathogenic. While *L. monocytogenes* infects both man and animals, *L. ivanovii* is principally an animal pathogen that rarely occurs in man. (Robinson et al., 2000).

The organism can survive at varying temperatures ranging from 4 to 37°C (Janakiraman, 2008). The bacterium can tolerate a wide range of pH and temperatures. Optimum growth occurs at 30-37°C but the organism can multiply at 4-45°C. A typical tumbling motility is observed around 25°C. It can grow at pH 4.5-9.6, although the growth is minimal at low pH and low temperatures (OIE, 2014).

Listeriosis is often noticed along with other poultry diseases such as coccidiosis, infectious coryza, verotoxic *E. coli*, salmonellosis, campylobacteriosis and parasitic infections, signifying the opportunistic nature of the organism (Adzitey et al., 2012).

Egg and egg products have never been caused listeriosis but is most frequently isolated from egg shells and in the environment of laying hens. (Chemaly et al., 2008) *L. monocytogenes* can survive 90 days on stored egg at 5°C and for 15 days at 10°C (Gandhi and Chikindas, 2007).

Briefly, invasiveness by virulence factors, *L. monocytogenes* expresses cell-surface and secreted proteins that enable attachment to host cells, escape from the phagocytic vacuole by Internalin A (inIA) and Internalin B (inIB) mediate the attachment of *L. monocytogenes* to the surface of host cells. Once ingested the bacterium produces listeriolysin (LLO) to escape from the phagosome and lyses the phagosomal membrane. The bacterium then multiply rapidly in the cytoplasm and moves through the cytoplasm to invade adjacent cells by polymerizing actin to form long tails, the actin-assembly-inducing protein (ActA) which propels bacteria through the cell and into neighbouring cells. (Todar, 2008)

Each step requires expression of specific virulence factors. The major virulence genes are clustered together on the chromosomes and regulated by the positive regulatory factor A protein PrfA (Positive Regulatory Factor A (PrfA)). (Scortti et al., 2007 and Freitag et al., 2009).

There is interplay between temperature and *L. monocytogenes* motility. *L. monocytogenes* can employ either multi-flagellar based motility or actin based propulsion depending on its environment. When *L. Monocytogenes* lives outside a host (<30 °C), it is flagellated and utilizes these flagella for movement. When the bacteria encounters higher temperatures, like those in a host, the flagellar expression is halted and the bacteria are non-flagellated (Williams et al., 2005).

The present study was conducted to estimate the prevalence of listeria species in poultry and milk products with special interest to *L. monocytogenes*. In addition to clarify the virulence of isolated strains and to carry out the antibiotics sensitivity testing of them. In addition, detection of some virulence factors of *L. monocytogenes* by PCR technique.

2. MATERIAL AND METHODS

2.1. Samples collection:

Two hundred random samples which collected from different sources 65 samples isolated from poultry, 45 from poultry byproducts (Frozen chicken meat balls (kofta), Frozen chicken burger and frozen chicken sausages), 20 from pasteurized milk, 30 from milk products (Feta cheese, cream cheese) and 40 from poultry eggs. The samples were collected in sterile plastic bags,
kept in ice box and transferred with a minimum delay to the laboratory for studying the presence of listeria species.

2.2. Bacteriological examination:

A-Primary stage: One ml of sample was inoculated into 9 ml Fraser broth 1, half Fraser broth (without supplement) and incubated aerobically at 30±1°C for 24±3 hours.

B-Secondary stage: One ml of incubated broth was inoculated into 9 ml Fraser broth 2, full strength Fraser broth (with supplement) and incubated at 37°C for 48±3 hours.

C-Third stage: 0.1 ml of incubated Fraser broth was streaked onto the following media: ALOA agar; PALCAM agar and Oxford agar plates then the plates were incubated at 37±1°C for 48 hours and examined after 24±3 hours. The listeria like colonies were picked and streaked onto Tryptic Soy agar (Bio-life) then, incubated at 35°C for 48 hours. The isolates were morphologically identified by Gram stain and biochemical tests according to (Markey et al., 2013).

2.3. In-vitro anti-microbial sensitivity tests:

The isolated L. monocytogenes strains were subjected to the sensitivity test against different antibiotics, using the disc and agar diffusion method: antibiotic discs are Erythromycin(E), Penicillin (P), Sulphamethoxazole (SM), ceftriaxone (CRO), Gentamycin (CN), Clindamycin (DA), Ampicillin (AM), Cefazoline (KZ), Sulphamethoxazole/ trimethoprim (SXT), ceftazidime (CAZ). (Finegold and Martin, 1982 and NCCLS, 1999)

2.4. Virulence tests:

Hemolytic activity: all isolates were cultured on 5% sheep blood agar to determine their hemolytic activity. Also, they were subjected to CAMP test (Mckellar,1994) by streaking staphylococcus aureus strains in single straight lines in parallel on sheep blood agar plates, the isolated listeria strains streaks perpendicularly,(1-2mm), then incubated for 24-48 hours at 35°C, enhanced zone of β-hemolysis considered as a positive reaction.

2.5. Genotypic detection of isolated L. monocytogenes and some virulence in them using polymerase chain reaction (PCR)

PCR using six sets of primers was used for genotypic detection of L. monocytogenes strains and five virulence genes of L. monocytogenes. The virulence genes were 16SRNA; internalin A (inlA); internalin B (inlB); hemolysin(hlyA) ;invasion associated protein (iap) and positive regulatory factor A (prfA).

It was applied on seven isolated L. monocytogenes following QIAamp® DNA Mini Kit instructions (Catalogue no. 51304), Emerald Amp GT PCR master mix (Takara) Code No. RR310A and Agarose 1% (Sambrook et al., 1989). The PCR condition have specific sequence and amplify specific products as shown in Table (2). Temperature and time condition of the primers during PCR are shown in table (3) according to specific authors and Emerald Amp GT PCR master mix (Takara) kit.

2. RESULTS

Of the total 200 different samples analyzed, L. monocytogenes was detected in 7 samples with prevalence of 14%; represented as in poultry, poultry byproducts, pasteurized milk, milk byproducts and poultry eggs, listeria percentage were 0/65(0%), 4/45(1.8), 0/20(0%), 0/30(0%) , 3/40(1.2%) isolates, respectively. as Table (1) The isolated colonies grow well on ALOA agar producing blue-green colonies surrounded by opaque halo and on PALCAM agar gives grey-green with black center and black halo against cherry-red background and on Oxford agar gives grayish colonies surrounded by black halos. They were Gram – positive bacilli or coccobacilli ; motile showing Umbrella – shaped motility. On biochemical reactions ,they produce acid from L-rhamnose, dextrose and but not with D-xylose and mannitol. The
results of virulence tests showed that, all isolated *L. monocytogenes* strains showed narrow zone of β-hemolysis on 5% sheep blood agar, positive in CAMP test and showed as arrow-shaped zone of weak enhanced hemolysis at junction of tested strains and *S. aureus* strain. The result of in-vitro sensitivity test showed that the isolated *L. monocytogenes* were sensitive to Sulphamethoxazole / trimethoprim (100%), followed by Gentamycin, Ceftazidime and Cephazoline (71.4%), followed by Sulphamethoxazole, ceftriaxone (42.8%), weak sensitivity to Penicillin (14.2%). While the isolated strains were resistant to Erythromycin, Ampicillin and Clindamycin as Fig (1).

Table (1): Total number and percentage of positive samples for listeria isolation from examined samples.

<table>
<thead>
<tr>
<th>Samples</th>
<th>Number of samples</th>
<th>Number of positive samples</th>
<th>%1</th>
<th>%2</th>
<th>%3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Poultry</td>
<td>65</td>
<td>zero</td>
<td>zero</td>
<td>zero</td>
<td>zero</td>
</tr>
<tr>
<td>Frozen wings</td>
<td>35</td>
<td>zero</td>
<td>zero</td>
<td>zero</td>
<td>zero</td>
</tr>
<tr>
<td>Frozen breast</td>
<td>30</td>
<td>zero</td>
<td>zero</td>
<td>zero</td>
<td>zero</td>
</tr>
<tr>
<td>Poultry products</td>
<td>45</td>
<td>4</td>
<td>8.9</td>
<td>57.1</td>
<td>2.0</td>
</tr>
<tr>
<td>Frozen chicken meat balls (kofta)</td>
<td>10</td>
<td>2</td>
<td>4.4</td>
<td>28.5</td>
<td>1.0</td>
</tr>
<tr>
<td>Frozen chicken burge</td>
<td>15</td>
<td>1</td>
<td>2.2</td>
<td>14.2</td>
<td>0.5</td>
</tr>
<tr>
<td>frozen chicken sausages</td>
<td>20</td>
<td>1</td>
<td>2.2</td>
<td>14.2</td>
<td>0.5</td>
</tr>
<tr>
<td>Pasteurized Milk</td>
<td>20</td>
<td>zero</td>
<td>zero</td>
<td>zero</td>
<td>zero</td>
</tr>
<tr>
<td>Milk products</td>
<td>30</td>
<td>zero</td>
<td>zero</td>
<td>zero</td>
<td>zero</td>
</tr>
<tr>
<td>Feta cheese</td>
<td>10</td>
<td>zero</td>
<td>zero</td>
<td>zero</td>
<td>zero</td>
</tr>
<tr>
<td>Cream cheese</td>
<td>20</td>
<td>zero</td>
<td>zero</td>
<td>zero</td>
<td>zero</td>
</tr>
<tr>
<td>Poultry eggs</td>
<td>40</td>
<td>3</td>
<td>7.5</td>
<td>42.8</td>
<td>2.5</td>
</tr>
<tr>
<td>Total</td>
<td>200</td>
<td>7</td>
<td>3.5</td>
<td>100.0</td>
<td>3.5</td>
</tr>
</tbody>
</table>

1 Percentage in relation to total number of samples in each raw.

2 Percentage in relation to total number of positive samples (7).

3 Percentage in relation to total number of collected samples (200).
Phenotypic and genotypic characterization of listeria species isolated from chicken and milk products

Fig. (1): In-vitro antimicrobial sensitivity test for isolated *L. monocytogenes*.

Table (2): Oligonucleotide primers sequences sources

<table>
<thead>
<tr>
<th>Primer</th>
<th>Sequence</th>
<th>Amplified product</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>16S rRNA</td>
<td>ggA CCg gg CT A TA CCg AAT gAT AA TTC ATg TAg gCg AgT TgC AgC CTA CTG CTT GAG CGT TCA TGT CTC ATC</td>
<td>1200 bp</td>
<td>Kumar et al., 2015</td>
</tr>
<tr>
<td>iap</td>
<td>CAT GGG TTT CAC TCT CCT TCT AC</td>
<td>131 bp</td>
<td>Soni et al., 2014</td>
</tr>
<tr>
<td>inlA</td>
<td>ACG AGT AAC GGG ACA AAT GC CCC GAC AGT GGT GCT AGA TT</td>
<td>800 bp</td>
<td>Liu et al., 2007</td>
</tr>
<tr>
<td>inlB</td>
<td>Ctgaaaagtttgttattttggaaa tttcataatgcacatatcact</td>
<td>343 bp</td>
<td>Deneer and Boychuk, 1991</td>
</tr>
<tr>
<td>hlyA</td>
<td>TGT-CAC-TGC-ATC-TCC-GTG-GT CCYTTTATGTACCCAYGA</td>
<td>174 bp</td>
<td></td>
</tr>
</tbody>
</table>
Table (3): cycling conditions of the different primers during cPCR

<table>
<thead>
<tr>
<th>Gene</th>
<th>Primary denaturation</th>
<th>Secondary denaturation</th>
<th>Annealing</th>
<th>Extension</th>
<th>No. of cycles</th>
<th>Final extension</th>
</tr>
</thead>
<tbody>
<tr>
<td>16S</td>
<td>94°C</td>
<td>94°C</td>
<td>60°C</td>
<td>72°C</td>
<td>35</td>
<td>72°C</td>
</tr>
<tr>
<td>rRNA</td>
<td>5 min.</td>
<td>30 sec.</td>
<td>1 min.</td>
<td>1 min.</td>
<td>12 min.</td>
<td></td>
</tr>
<tr>
<td>lap</td>
<td>94°C</td>
<td>94°C</td>
<td>60°C</td>
<td>72°C</td>
<td>35</td>
<td>72°C</td>
</tr>
<tr>
<td></td>
<td>5 min.</td>
<td>30 sec.</td>
<td>30 sec.</td>
<td>30 sec.</td>
<td>7 min.</td>
<td></td>
</tr>
<tr>
<td>prfA</td>
<td>94°C</td>
<td>94°C</td>
<td>50°C</td>
<td>72°C</td>
<td>35</td>
<td>72°C</td>
</tr>
<tr>
<td></td>
<td>5 min.</td>
<td>30 sec.</td>
<td>50 sec.</td>
<td>1 min.</td>
<td>10 min.</td>
<td></td>
</tr>
<tr>
<td>inlA</td>
<td>94°C</td>
<td>94°C</td>
<td>55°C</td>
<td>72°C</td>
<td>35</td>
<td>72°C</td>
</tr>
<tr>
<td></td>
<td>5 min.</td>
<td>30 sec.</td>
<td>45 sec.</td>
<td>45 sec.</td>
<td>10 min.</td>
<td></td>
</tr>
<tr>
<td>inlB</td>
<td>94°C</td>
<td>94°C</td>
<td>55°C</td>
<td>72°C</td>
<td>35</td>
<td>72°C</td>
</tr>
<tr>
<td></td>
<td>5 min.</td>
<td>30 sec.</td>
<td>40 sec.</td>
<td>40 sec.</td>
<td>10 min.</td>
<td></td>
</tr>
<tr>
<td>hlyA</td>
<td>94°C</td>
<td>94°C</td>
<td>50°C</td>
<td>72°C</td>
<td>35</td>
<td>72°C</td>
</tr>
<tr>
<td></td>
<td>5 min.</td>
<td>30 sec.</td>
<td>30 sec.</td>
<td>30 sec.</td>
<td>7 min.</td>
<td></td>
</tr>
</tbody>
</table>

Fig. (2): 16SrRNA genes. Lane L:100-1500bp Ladder. Neg:Negative control. Pos: Positive control at (1200bp). Lanes 1 to 7: L.monocytogenes (16SrRNA) gene positive.

Fig. (3): inlA gene. Lane L:100-1000bp Ladder. Neg:Negative control. Pos:Positive control at (800bp). Lanes 1 to 7: L.monocytogenes (inlA) gene positive.
4. DISCUSSION

Most human listeriosis cases appear to be linked to consumption of ready-to-eat (RTE) food products (Lunde´n et al., 2004). In particular, *L. monocytogenes* contamination of fermented dairy products made from raw milk may be due either to use of contaminated raw milk or to postprocessing contamination from
environmental sources not directly linked to raw milk (Kells and Gilmour, 2004).

Listeriosis is of great public health concern because of its high mortality (20 to 30%) and its common source epidemic potential. The most important aspect in food hygiene is the ability of the bacteria to survive in a wide range of temperatures and to make biofilms on various environmental surfaces, which serve as natural habitats or reservoirs (Duggan and Phillips, 1998).

Listeriosis is caused by members of the genus Listeria, which has now 17 species. However, only two species are considered pathogenic.

L. monocytogenes is considered pathogenic to human beings and several animal species, whereas *L. ivanovii* is pathogenic especially to ruminants but occasionally to humans (McLauchlin & Martin, 2008).

Ability of *L. monocytogenes* to cause disease depends upon the expression of virulence factors and immune status of individuals. Usually individuals having weakened cell-mediated immunity are more susceptible to *L. monocytogenes*. (Lecuit et al., 2004)

The result of isolated samples as in Table (1) revealed that *L. monocytogenes* was detected in 7 samples out of 200 samples (14%) represented as in poultry, poultry byproducts, pasteurized milk, milk byproducts and poultry eggs, listeria percentage were 0/65(0%), 4/45(1.8), 0/20(0%), 0/30(0%), 3/40(1.2%) isolates, respectively that disagreed with that recorded by (Alsheikh et al., 2013 and Zeinali et al., 2017)

In this research *listeria monocytogenes* was found in Frozen wings of poultry, frozen breast of poultry by percentage (0%) that totally disagreed with (Reiter et al., 2005)

The result of in vitro sensitivity test showed that ,the isolated *L.monocytogenes* were highly sensitive to Sulphamethoxazole /trimethoprim (100%), followed by Gentamycin Ceftazidime and Cephazoline (71.4%), followed by Sulphamethoxazole, ceftriaxone (42.8%), weak sensitivity to Penicillin (14.2%). While the isolated strains were resistant to Erythromycin, Ampicillin and Clindamycin. And these results came in accordance with those recorded by (Zeinali et al., 2017) and disagreed with (Hof, 2004; Altuntas et al., 2012).

The heamolytic activities of listeria species determine its pathogenicity (Maarouf et al., 2007). The result of virulence tests for isolated listeria showed that ,all *L.monocytogenes* were positive to CAMP test and showed narrow zone of β-heamolysis in sheep agar, the similar results were reported by (Boland et al., 2001 and Maarouf et al., 2007)

The PCR results for *L.monocytogenes* isolated showed that(*16SrRNA ;inl A and hlyA*) genes were detected in all seven strains. While inl B ; iap and perfA genes are not detected in all isolated that dissimilar to that reported by (Xiaolong et al., 2017)

Regarding to the occurrence of 16SrRNA genes in *L.monocytogenes* isolates , the obtained result revealed that , it was amplified in all seven tested isolates 100% ,that agreed with those recorded by (Gelbicova and Karpiskova ,2012 and Ciolacu et al., 2015)

The result of PCR for amplification of internalin A (inlA) gene in *L.monocytogenes* (Fig.3) showed that , inIA gene was amplified in all seven tested isolates giving product of 800bp,that similar recorded by (Gelbicova
Phenotypic and genotypic characterization of listeria species isolated from chicken and milk products

The result of PCR for amplification of internalin B (inlB) gene in L. monocytogenes (Fig. 5) showed that, inlB gene wasn’t amplified in all seven tested isolates, that disagreed with (Shen et al., 2000). The result of PCR for amplification of listeriolysin O (hemolysin, hlyA) gene in L. monocytogenes (Fig. 4) showed that, hlyA gene was amplified in all seven tested isolates giving product of 174bp, that similar recorded by (Schuerch et al., 2005; Gelbicova and Karpiskova, 2012; Khan et al., 2014; and Ciolacu et al., 2015).

The result of PCR for amplification of positive regulatory factor gene (prfA) in L. monocytogenes (Fig. 6) showed that, prfA gene wasn’t amplified in all seven tested isolates, that dissimilar with (Holko et al., 2002; Gelbicova and Karpiskova, 2012 and Ciolacu et al., 2015).

The result of PCR for amplification of Invasion-associated protein (iap) gene in L. monocytogenes (Fig. 7) showed that iap gene wasn’t amplified in all seven tested isolates, that dissimilar with (Schuerch et al., 2005).

At the last, we can conclude from the present work that L. monocytogenes are mainly food born pathogen that could contaminate poultry products, milk, milk products and poultry eggs causing listeriosis. The isolated L. monocytogenes were sensitive to Sulphamethoxazole / trimethoprim (100%), followed by Gentamycin, Ceftazidime and Cephazoline (71.4%), and resistant to Erythromycin, Ampicillin and Clindamycin. all the isolated L. monocytogenes were CAMP Positive and produce β-zone of hemolysis. In PCR result assured that all seven strains are Listeria monocytogenes and have InlA and hlyA virulence genes and lack inlB, prfA and iap genes.

5. REFERENCES

Marrouf, A.A., El-Bealawy, M.A., Moubarak, M.G. 2007 . Some studies of listeriosis in sheep atEl-Kaliobia

