Hepatoprotective and antioxidant effects of Ocimum basilicum extract in CCL₄-induced hepatotoxic rats compared with Silymarin.

Sarhan, Hasnaa, Farid, Ayman and Mostafa, Khalid
Clinical Pathology Department, Faculty of Veterinary Medicine, Benha University

ABSTRACT

The present study was designed to investigate the hepatoprotective and antioxidant effects of Ocimum Basilicum extract (OBE) on carbon tetra-chloride (CCl₄) induced rats hepatotoxicity compared with silymarin. Animals were divided into 6 groups. Group 1 was used as a control and received distilled water (1 ml/kg, p.o) daily for 21 days. Group 2 (Silymarin group): rats treated with silymarin (100 mg/kg, p. o./day/ 21 days). Group 3 (OBE group) rats administered OBE (400 mg/kg, p. o./day/ 21 days). Group 4 (CCl₄ group) rats injected with CCl₄: corn oil (1:3) 2.5 ml/kg, s. c. on 15th day, 18th and 21st day. Group 5 (silymarin protected group) rats treated with silymarin (100 mg/kg, p.o/day/21days) then injected with CCl₄ dose as group 4. Group 6 (OBE protected group) rats administered OBE (400 mg/kg, p. o./day/ 21 days) then injected with CCl₄ : corn oil (1:3) 2.5 ml/kg, s. c. on 15th day, 18th and 21st day. Blood samples were separated into serum for liver functions determination (ALT, AST, GGT, ALP and bilirubin) and Liver tissue sample for antioxidant parameters determination (MDA, SOD, GPx and CAT), Immunological assay (TNF, IL-4 and NFkB) and histopathology. The results revealed that in CCl₄ group, there were significant increases in ALT, AST, GGT, ALP, bilirubin, MDA, TNF, IL-4 and NFkB, while parameters, SOD, GPx and CAT showed significant decreases. Moreover, histological examination of liver tissue of CCl₄ injected rats showed centriloculbar hepatic degeneration and coagulative necrosis with marked fatty changes compared with the control. Meanwhile, administration of Silymarin and OBE resulted in a significant decrease in all elevated mentioned parameters and increase in SOD, CAT and GPx. In addition, the liver tissues showed improved pathological alterations Therefore, it could be concluded that OBE has hepatoprotective and antioxidant role but silymarin has significant anti-oxidant effect than OBE.

Key words: OBE, silymarin, CCl₄ hepatotoxicity, antioxidant.

1. INTRODUCTION

Liver plays important metabolic, detoxification, and secretory roles in the body. Liver disease is associated with distortion of these metabolic functions (Chaware et al., 2009). Human continuously exposed to different kinds of chemicals such as food additives, industrial chemicals, pesticides and other undesirable contaminants (Gabale et al., 2003).

Carbon tetrachloride (CCl₄) is a common hepatotoxin that is widely used to induce toxic liver injuries (Pereira-Filho et al., 2008). Search for newer drugs continues because the existing synthetic drugs have several limitations (Gandhimathi and Saravana Kumar, 2012). Silymarin is a standardized extract obtained from the seeds of milk thistle plant (Kim et al., 2003). Silymarin has the ability to scavenge free radicals and has stabilizing effect. Moreover, it has anti-inflammatory, immunomodulatory, and lately antifibrotic properties in the liver (Fehér and Lengyel, 2012).

Ocimum basilicum Extract (OBE.), sweet basil, or Rehan in Egypt is an annual, widely cultivated herb known for its medicinal value. Most of the biological activities like antioxidant effects are associated with its volatile oil content (Shirazi et al., 2014). The phytochemical analysis of the plant reveal that
Hepatoprotective and antioxidant effects of *Ocimum basilicum* extract in

the plant is rich source of polyphenols (Arts and Hollman, 2005) which include flavonoids, phenolic acids, phenolic alcohols, stilbenes, and lignans (D'Archivio et al., 2007). In leaves extract, the total phenolic content has been found to be 32.23 ± 4.45 (Rafat et al., 2010).

The aim of this study was to evaluate the hepatoprotective effect of *Ocimum basilicum* extract in CCl4 induced hepatotoxicity comparing with silymarin as a standard drug through the investigation of liver functions (ALT, AST, GGT, ALP and bilirubin) , antioxidant parameters (MDA, SOD, GPx and CAT), Immunological assay (TNF, IL-4 and NFkβ) and histopathological examination of liver.

2. MATERIAL AND METHODS

2.1. Animals:

Sixty male Wistar rats weighting about (150-170 g), were obtained from (The united company for chemicals, Abu zabal). They were housed in aluminium cage at 10 rats per cage and were fed ad libitum with standard commercial pelleted feed with free access to clean drinking water. They were kept at normal environmental temperature and natural light/darkness daily cycle.

2.2. Chemical experimental substances:

Silymarin from Madaus/Cid Company 100 mg/kg per os by gastric tube according method of Refaey et al., (2015) with some modification (daily silymarin treatment all over the experimental period). It is dissolved in corn oil.

CCl4 was obtained from ALAMIA company for chemicals. It is diluted with corn oil as CCl4 : corn oil (1:3, 2.5 ml/kg, i/p) (Refaey et al., 2015) with some modification. OBE obtained from Research Institute. The aqueous extract was used at a dose level of 500 mg/kg b.wt (Manikandan et al., 2007).

2.3. Experimental design:

In this study, 60 male albino rats were randomly divided into six groups (10 rats each) as follows: Group 1 (normal control rats): received distilled water (1 ml/kg, p.o.) daily for 21 days. Group 2 (Silymarin group): received silymarin (100 mg/kg, p. o.) daily for 21 days. Group 3 (OBE group) received OBE (500mg/kg, p. o.) daily for 21 days. Group 4 (CCl4 group): received CCl4: corn oil (1:3, 2.5 ml/kg, s. c.), on 15th day, 18th and 21st day of the treatment. Group 5 (silymarin protected group) received silymarin (100mg/ kg, p. o.) daily for 21 days +CCl4 with same treatment of group 2. Group 6 (OBE protected group) received OBE same to group 3 and CCl4 with same treatment of group 2.

2.4. Sampling:

Blood samples were collected after overnight fasting from retro-orbital plexus from all groups after 16th and 22nd of experimental beginning. Serum samples: 1ml blood samples were collected in gel tubes and separated by centrifugation at 2500 r.p.m. for 15 minutes for serum separation, then se- rum preserved in refrigerator at -20 °C for estimation of biochemical param-eters.

After collection of blood samples rats were sacrificed by cervical decapitation and liver specimen was perfused with cold saline to exclude the blood cells. The liver was divided into two parts. The first part (1gm) was suspended in 4ml physiological saline for homogenization then centrifugation. The supernatants were kept at -20°C till the time of determination of oxidative/antioxidant parameters (Yang et al., 2010). The second part was kept for gene expression at -80°C (22nd only). The third part was placed in 10 % formalin solution for histopathological investigations (22nd day only).

2.5. Biochemical parameters measurement:

AST and ALT estimated according to Schumann and Klauke, (2003). Kinetic determination of activity of GGT was determined colorimetrically according to the method of Szasz, (1969). Kinetic determination of ALP activity was determined colorimetrically according to the method of Tietz et al., (1983). Total and direct bilirubin were determined spectrophotometrically according to Burtis et al., (2012).
2.6. Antioxidant parameters Determination:

Malondialdehyde was determined by the reaction described by Ohkawa., et al., (1979). GPX is determined by the reaction described by Pgia and Valentine., (1967). Superoxide dismutase was performed according to the method of Nishikimi et al., (1972). Liver CAT activity was determined according to the method described by fossati et al., (1980).

2.7. Molecular investigation (real time PCR):

1. RNA extraction from liver tissues:

Pure RNA was extracted using total RNA Purification Kit following the manufacturer protocol (Thermo Scientific, Fermentas, #K0731). 2. cDNA synthesis: This technique was done using Revert Aid H minus Reverse Transcriptase which is a genetically modified M-MuLV RT, to convert RNA into complementary DNA (cDNA). 3. Quantification of RNA: was done by using Nanodrop.

2.8. Histopathological examinations:

Samples from the medial hepatic lobe were collected from animals of different groups, then fixed in 10% neutral buffered formalin. After dehydration and clearance, the tissues were embedded in paraffin and sectioned in 5 µm thickness. The serial sections were subjected to staining with hematoxylin and eosin (Bancroft and Layton, 2013).

2.9. Statistical analysis:

The statistical analysis was carried out using one-way ANOVA using SPSS, ver. 22 (IBM Corp. Released 2013). Data of serum biochemistry, antioxidant assay and immunological assay were treated as a complete randomization design according to Steel et al., (1997). Multiple comparisons were carried out applying Tukey test. The significance level was set at p< 0.05.

3-RESULTS

1.3-Biochemical parameters: (table 1) in 1st check point and (table 2) in 2nd check point revealed that CCl4 injected rats in group 4 showed sig-nificant increase in ALT, AST, GGT, ALP and bilirubin (total, direct and indirect) when compared with normal control rats. Rats protected with Si-lymarin or OBE revealed non-significant changes in ALT, AST, GGT, ALP and bilirubin (total, direct and indirect) compared with normal control rats.

In contrast, silymarin protected group and OBE protected group CCl4 showed significant decrease in all elevated blood parameters comparing with CCl4 injected rats.

2.3- Antioxidant parameters: (table 1) in 1st check point and (table 2) in 2nd check point revealed the following:

Compared with normal control rats, MDA was significantly increased in CCl4 injected rats, while GPx was significantly decreased in 1st and 2nd check points. SOD and CAT levels showed a significant decrease in 1st check point, while non-significant changes in 2nd check point.

In comparison with normal control rats, silymarin administered rats revealed non-significant changes in MDA and GPx activities in 1st and 2nd check points. SOD and CAT showed non-significant changes in 1st check point, while a significant increase in 2nd check point.

Rats protected with Silymarin in 1st and 2nd check points showed sig-nificant increases in CAT, SOD and GPx activities, while a significant de-crease in MDA compared with CCl4 injected rats.

Concerning to OBE administered rats when compared with normal control rats showed significant decreases in SOD and GPx activities in 1st check point while non-significant changes in 2nd check points. Non-significant change in CAT activity and a significant increase in the level of MDA were observed in 1st and 2nd check points.

Rats protected with OBE revealed significant increases in GPx and SOD activities when compared with CCl4 injected rats, while a significant decrease in MDA was recorded. A non-significant change in CAT activity was observed in 1st check point. Meanwhile there were non-significant changes in activities of SOD, GPx, CAT and MDA in 2nd check points.

3.3 Molecular analysis:

The obtained qPCR results in 2nd check point table (5) revealed a sig-nificant (P<0.05) upregulation of (TNFa, IL4 and NFkB/B genes) in liver of CCl4 injected rats as compared to normal control rats.

Silymarin administered rats or OBE administered rats revealed non-significant
Hepatoprotective and antioxidant effects of Ocimum basilicum extract

changes in the three genes expression when compared to normal control rats. The elevated expression of genes in CCl4 injected rats was significantly reduced following treatment by Silymarin and OBE. Rats protect-ed with Silymarin revealed a significant decrease in the three genes expres-sion when compared with rats protected with OBE.

3.4. Histopathology:
The liver of normal control rats showed normal hepatocytes arranged in cords around the central vein to form hepatic plates (figure 1A). Comparing with normal control rats, CCl4 injected rats revealed marked hepatic tissue alteration represented by peculiar centrilobular hepat-ic degeneration and necrosis. Most of hepatocytes around the central vein showed coagulative necrosis with marked fatty changes (figure 1B).

Silymarin administered rats or OBE administered rats showed no hist-pathological alteration and normal hepatocytes arranged in cords around the portal area when compared with normal control rats (figure 1C& 1D).

Rats protected with Silymarin or OBE compared with CCl4 injected rats demonstrated noticeable decrease of fatty change (to mild and moderate degree), hepatic necrosis and inflammation (figure 1E&1F).

| Table (1): Biochemical parameters of rats in different groups at 1st check point on 16th day of experiment |
|---|---|---|---|---|---|---|---|
| Group | Parameters | AST (U/L) | ALT (U/L) | GGT (U/L) | ALP (U/L) | T.B (mg/dl) | D.B (mg/dl) | Ind.B (mg/dl) |
| Control | 96.23±3.90b | 53.84±3.60b | 9.68±0.80b | 117.98±5.39b | 0.81±0.05b | 0.2±0.02b | 0.58±0.04b |
| Silymarin | 95.92±4.24b | 54.12±4.62b | 9.48±0.92b | 123.66±5.66b | 0.81±0.06b | 0.24±0.03b | 0.58±0.05b |
| Ocimum | 96.85±4.28b | 54.67±4.64b | 9.58±0.93b | 124.87±5.71b | 0.82±0.06b | 0.24±0.03b | 0.58±0.06b |
| CCL4 | 155.56±4.83a | 98.14±6.18a | 15.49±1.28a | 188.57±8.74a | 1.40±0.15a | 0.39±0.04a | 1.01±0.16a |
| Silymarin + CCL4 | 113.55±4.60b | 63.53±4.24b | 11.42±0.94b | 139.22±6.35b | 0.96±0.06b | 0.27±0.02b | 0.69±0.05b |
| Ocimum + CCL4 | 104.38±4.62bc | 58.89±5.03b | 10.31±1.00b | 134.56±6.16b | 0.88±0.06bc | 0.26±0.03b | 0.63±0.06b |

Results are expressed as mean ± S.E.M. Superscript letters (a, b and c) indicate significant differences (P ≤ 0.05) between any two means, within the same column

| Table (2): Biochemical parameters of rats in different groups at 2nd check point on 22nd day of experiment |
|---|---|---|---|---|---|---|---|
| Group | Parameters | AST (U/L) | ALT (U/L) | GGT (U/L) | ALP (U/L) | T.B (mg/dl) | D.B (mg/dl) | Ind.B (mg/dl) |
| Control | 106.46±4.52b | 65.79±3.67b | 9.42±0.49b | 115.51±9.39b | 1.13±0.02b | 0.39±0.02b | 0.74±0.02b |
| Silymarin | 110.70±4.71b | 68.49±3.87b | 9.79±0.51b | 120.13±9.76b | 1.17±0.03b | 0.41±0.02b | 0.76±0.02b |
| Ocimum | 113.49±5.72b | 70.45±4.76b | 10.24±0.49b | 115.39±10.19b | 1.18±0.03b | 0.40±0.02b | 0.79±0.03b |
| CCL4 | 199.60±8.32a | 128.54±5.12a | 16.88±0.85a | 214.96±22.04a | 2.77±0.13a | 0.72±0.04a | 2.04±0.11a |
| Silymarin + CCL4 | 122.41±5.21b | 75.73±4.28b | 10.83±0.56b | 132.84±10.80b | 1.30±0.03b | 0.45±0.02b | 0.85±0.02b |
| Ocimum + CCL4 | 117.81±5.94b | 73.14±4.94b | 10.63±0.50b | 119.78±10.58b | 1.23±0.04b | 0.41±0.02b | 0.81±0.03b |

Results are expressed as mean ± S.E.M. Superscript letters (a, b and c) indicate significant differences (P ≤ 0.05) between any two means, within the same column
Table (3): Antioxidant parameters of rats in different groups at 1st check point on 16th day of experiment

<table>
<thead>
<tr>
<th>Group</th>
<th>Parameters</th>
<th>MDA (nmol/mg)</th>
<th>SOD (U/L)</th>
<th>GPX (ng/mg)</th>
<th>CAT (ng/mg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td></td>
<td>0.11±0.01d</td>
<td>0.27±0.02ab</td>
<td>0.34±0.03a</td>
<td>0.27±0.01ab</td>
</tr>
<tr>
<td>Silymarin</td>
<td></td>
<td>0.12±0.01cd</td>
<td>0.32±0.02a</td>
<td>0.29±0.02ab</td>
<td>0.30±0.02a</td>
</tr>
<tr>
<td>Ocimum</td>
<td></td>
<td>0.25±0.02b</td>
<td>0.18±0.01c</td>
<td>0.26±0.02b</td>
<td>0.27±0.02ab</td>
</tr>
<tr>
<td>CCL4</td>
<td></td>
<td>0.31±0.02a</td>
<td>0.11±0.01d</td>
<td>0.09±0.02c</td>
<td>0.14±0.02c</td>
</tr>
<tr>
<td>Silymarin + CCL4</td>
<td></td>
<td>0.17±0.02c</td>
<td>0.31±0.01a</td>
<td>0.26±0.02b</td>
<td>0.25±0.04ab</td>
</tr>
<tr>
<td>Ocimum + CCL4</td>
<td></td>
<td>0.23±0.01b</td>
<td>0.22±0.02bc</td>
<td>0.20±0.02b</td>
<td>0.19±0.03bc</td>
</tr>
</tbody>
</table>

Results are expressed as mean ± S.E.M.
Superscript letters (a, b and c) indicate significant differences (P ≤ 0.05) between any two means, within the same column.

Table (4): Antioxidant parameters of rats in different groups at 2nd check point on 22nd day of experiment

<table>
<thead>
<tr>
<th>Group</th>
<th>Parameters</th>
<th>MDA (nmol/mg)</th>
<th>SOD (U/L)</th>
<th>GPX (ng/mg)</th>
<th>CAT (ng/mg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td></td>
<td>0.12±0.00c</td>
<td>0.16±0.01b</td>
<td>0.27±0.03ab</td>
<td>0.22±0.01c</td>
</tr>
<tr>
<td>Silymarin</td>
<td></td>
<td>0.13±0.02c</td>
<td>0.38±0.05a</td>
<td>0.29±0.05a</td>
<td>0.35±0.03b</td>
</tr>
<tr>
<td>Ocimum</td>
<td></td>
<td>0.23±0.02b</td>
<td>0.18±0.01b</td>
<td>0.28±0.02b</td>
<td>0.23±0.01c</td>
</tr>
<tr>
<td>CCL4</td>
<td></td>
<td>0.31±0.02a</td>
<td>0.15±0.03b</td>
<td>0.15±0.01c</td>
<td>0.19±0.01c</td>
</tr>
<tr>
<td>Silymarin + CCL4</td>
<td></td>
<td>0.16±0.04c</td>
<td>0.31±0.04a</td>
<td>0.33±0.06a</td>
<td>0.41±0.03a</td>
</tr>
<tr>
<td>Ocimum + CCL4</td>
<td></td>
<td>0.30±0.02ab</td>
<td>0.18±0.03b</td>
<td>0.22±0.03ab</td>
<td>0.2±0.02c</td>
</tr>
</tbody>
</table>

Results are expressed as mean ± S.E.M.
Superscript letters (a, b and c) indicate significant differences (P ≤ 0.05) between any two means, within the same column.

Table (5). Relative expression of **TNFa, IL4 and NFkB/B** gene in liver of different groups

<table>
<thead>
<tr>
<th>Group</th>
<th>TNF alpha</th>
<th>IL4</th>
<th>NFkB/B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal control (G1)</td>
<td>1.00d</td>
<td>1.00d</td>
<td>1.00d</td>
</tr>
<tr>
<td>Silymarin group (G2)</td>
<td>0.96d</td>
<td>1.15d</td>
<td>1.04d</td>
</tr>
<tr>
<td>Ocimum group (G3)</td>
<td>1.05d</td>
<td>1.26d</td>
<td>1.16d</td>
</tr>
<tr>
<td>CCL4 group (G4)</td>
<td>5.54a</td>
<td>10.06a</td>
<td>6.45a</td>
</tr>
<tr>
<td>Silymarin +CCL4 (G5)</td>
<td>2.69b</td>
<td>3.01b</td>
<td>3.16b</td>
</tr>
<tr>
<td>Ocimum +CCL4(G6)</td>
<td>3.92c</td>
<td>5.03c</td>
<td>4.14c</td>
</tr>
</tbody>
</table>

Results are expressed as mean ± S.E.M.
Superscript letters (a, b and c) indicate significant differences (P ≤ 0.05) between any two means, within the same column.
Hepatoprotective and antioxidant effects of *Ocimum basilicum* extract in

![Image](image.png)

Fig.1.A: Liver of rat (control) showing normal hepatocytes arranged in cords around the central vein (arrow), H&E, bar= 100 µm.; B: Liver of rat administered with silymarin showing normal hepatocytes arranged in cords around the central vein (arrow), H&E, bar= 100 µm.; C: Liver of rat administered with *O. basilicum* showing normal hepatocytes arranged in cords around the central vein (arrow), H&E, bar= 100 µm.; D: Liver of rat intoxicated with CCl₄ showing marked centrilobular hepatic vacuolation (arrow) associated with mononuclear cells infiltration (arrowhead), H&E, bar= 100 µm.; E: Liver of rat intoxicated with CCl₄ and protected with silymarin showing mild to moderate degree of fatty change (arrow), H&E, bar= 100 µm ; F: Liver of rat intoxicated with CCl₄ and protected with *O. basilicum* showing marked decrease of the hepatic necrosis and cellular apoptosis (arrow), H&E, bar= 100 µm.

4. DISCUSSION

Regarding to liver enzymes, rats injected with CCl₄ showed significant increase in the ALT and AST activities in 1st and 2nd check points. These results agree with Shah et al., (2015) who attributed that CCl₄ causes injury of the membrane and so leakage of the cytosomal enzymes. That is may be due to the reactive intermediate free radicals which are produced by CCl₄ bioactivation by cytochrome P450 (Weber et al., 2003). Also, CCl₄ treatment causes an increase in the level of serum GGT, ALP and total, direct and indirect bilirubin. These results agree with Li et al., (2015). The increase may be attributed to the increase synthesis of GGT and ALP in case of the biliary pressure increase (Muriel et al., 1992). Silymarin protected group significantly reduced the elevated liver enzymes and bilirubin (total, direct and indirect) after CCl₄ administration in 1st and 2nd check points. These results agree with Saller et al., (2007). Silymarin contain natural products as tocopherol and ascorbic acid 6 hexadecanoate, sterols, sterylglucosides and squalene, which could diminish the membrane peroxidation as well as the leakage of enzymes (Habib-ur-Rehman et al., 2009).

In 1st and 2nd check points, the administration of OBE significantly decreased the serum ALT and AST, ALP, GGT, total, direct and indirect bilirubin close to normal control rats. Results from this study conform with Atangwho et al., (2014) and Meera et al., (2009). These results could be explained that OBE protects the hepatocytes from injuries and improves the function of liver (Chiu et al., 2012).

Concerning to antioxidants parameters, the increase of MDA in CCl₄ administered rats in 1st and 2nd check points compared to normal rats may be attributed to the trichloromethyl radicals that resulted from CCl₄ metabolism. Those radicals stimulate the process of lipid peroxidation with the formation of by-products such as MDA. (Madubuike et al., 2015)

Also, in the present study, the hepatic antioxidant enzymes SOD and CAT (in 1st check point) and GPx (in 1st and 2nd check points) were significantly decreased activities in CCl₄-intoxicated rats compared with control rats. These results partially match with Tsai et al., (2009). Decrease in enzyme activity may be attributed to the deactivation of their
isoenzymes by oxidation of a cysteine residue near the active centre (Tamai et al., 1990).
Rats protected with Silymarin showed a significant decrease in MDA levels. On the contrary, SOD, catalase and GPx activities were significantly elevated by administration of silymarin to CCl4-intoxicated rats, that reflects its ability to restore these enzymes activities in the liver damaged by CCl4. These result is in agreement with Trappoliere et al., (2009). Silymarin contain linoleic acid that could be converted into certain isomers of conjugated linoleic acids (CLA) in the gastrointestinal tract of rats. CLA inhibit lipoperoxidation and as a result, MDA decreased (Arab et al., 2006). Also due to its content of tocopherol (Sudheesh et al., 2013), CLA (Belury, 2002), sterols (Conforti et al., 2008), ascorbic acid 6-hexadecanoleoate (Klein and Weber., 2001) and sterylglucosides (Mirmiran et al., 2014), it recovers the activities of CAT and SOD, as well as of GPx as these substances have antioxidant effects.
Rats administered OBE only compared with normal rats showed significant increase in liver MDA in 1st and 2nd check points and significant decreases in liver SOD and GPx levels in 2nd check point. These results partially agree with Karaali et al., (2018) who found that pretreatment with basilis extract caused increase in serum ALT and AST and MDA in liver.
OBE protected group demonstrated significant increases in GPx and SOD compared with CCl4 injected rats, while a significant decrease in MDA was observed in the 1st check point. Dasgupta et al., (2007) found that O. basilicum increased the activity of xenobiotic metabolizing phase 1 and phase 11 enzymes, elevating antioxidant-enzyme response.
Regarding to proinflammatory and anti-inflammatory cytokine expression, CCl4 cause a significant increase in TNF-α and NFkB expression. The free radicals and ROS that generated from CCl4 metabolism by cytochrome P450 2E1 (CYP2E1), stimulate the upregulation of TNF-α (Jeong, 2008).
Chávez et al., (2008) mentioned that CCl4 increase NFkB, which regulates the several genes transcription including cytokines in rat. Liver injury caused by CCl4 leads to rapid recruitment of eosinophils, which secrete IL-4 to stimulate the proliferation of quiescent hepatocytes. IL-4 is able to stimulate cell cycle progression via IL-4Rα in liver cells (Goh et al., 2013).
Silymarin protected group showed a lower expression level of TNF-α, IL-4 and NFkB compared to CCl4 injected rats. This trend agrees with Schümann et al., (2003). That result reflects the ability of silymarin to ameliorate inflammatory markers (Altai, 2012). Silibinin considered to be an immune-response modifier in vivo, suppressing the NF-kB activation which suppresses the subsequent synthesis of TNF and stimulating synthesis of IL-10 within the liver. In addition, while the synthesis of IL-10 was stimulated, the intrahepatic production of IL-4 was inhibited (Abenavoli et al., 2008).
OBE causes a significant decrease in the expression of genes (TNFα, IL4 and NFkB) comparing with CCl4 injected rats. These results partially agree with Athari et al., (2018). Rosmarinic acid which present in large amounts in OBE (Makino et al., 1998), suppress the induction of TNFα by inhibiting the proliferation of mesangial cell which secretes TNFα as autocrine factors. The antiproliferative effects exhibited by rosmarinic acid are due to its suppressive effects on PDGF (platelet derived growth factor) and c-myc m-RNA expression which are essential in mesangial cell proliferation (Makino et al., 2000). Ocimum labiatum extract treatment causes down-regulation of the IL-4 cytokine by reconditioning the function of Th2 effector cells (Taylor et al., 2012).
Concerning to histopathological changes, CCl4 causes centrilobular hepatic degeneration and coagulative necrosis with marked fatty changes. The present results are in accordance with those of Sree lethal et al.,(2009). CCl4 is metabolized by cytochrome P-450 enzymes that leads to liberation of free radicles as trichloromethyl and trichloro-methylperoxyx radicals. These radicals bind to hepatocyte components and also affect unsaturated fatty acids that results in phospholipid destruction (Cheeseman et al., 1985), which results in accumulation of fat (fatty liver) and damage of the liver (Chamulitrat et al., 1995).
The current results revealed that silymarin treatment was shown to decrease fatty change, hepatic necrosis and inflammation. These findings agree with those of Abdel-Salam et al., (2007). The hepatoprotective role of silymarin acted by antioxidative, anti-fibrotic, anti-lipid peroxidative, membrane stabilizing...
and liver regenerating mechanisms (Chlopčíková et al., 2004; Pradhan and Girish, 2006). The anti-inflammatory effect of silymarin is mediated through inhibition of neutrophil migration (De La Puerta et al., 1996).

The present study showed that OBE decrease hepatic necrosis and vacuolation. These results agree with Ogaly et al., (2015). OBE has anti-inflammatory and hepatotonic effects acting by stimulating p450 detoxification enzymes help in neutralization of free radicals and overtly aggressive oxygen species. Moreover, ocimum basilicum contains methyl eugenol which has antioxidant and anti-inflammatory properties (Duke, 2003). In addition, ocimum basilicum can decrease the conversion of hepatic stellate cells into myofibroblasts (Salmah et al., 2005).

5. CONCLUSION

The results of present study demonstrate that OBE has hepatoprotective ability against CCl₄ hepatotoxicity in rats comparing with silymarin. The results also imply that the hepatoprotective effects of OBE may be due to the presence of flavonoids compounds with strong antioxidant activities. However, silymarin has more potent hepatoprotective and antioxidant effect than ocimum.

6. REFERENCES

Cheeseman, K.H., Albano, E.F., Tomasi, A. and

Li, C., Yi, L.-T., Geng, D., Han, Y.-Y. and Weng, L.-j., 2015a. Hepatoprotective effect of ethanol extract from
Hepatoprotective and antioxidant effects of Ocimum basilicum extract in

Berchemia lineate against CCL4-induced acute hepatotoxicity in mice. Pharmaceutical biology 53, 767-772.

Clinica chimica acta 327, 69-79

