BENHA VETERINARY MEDICAL JOURNAL, Vol. 36, No. 1:43-50, MARCH, 2019

Preparation of buffered acidified plate antigen from *Brucella abortus* strain 19

¹Lubna,F. Farahat,² Khaled,A.Abd-El-Azeem,³ Alaa,El Menisy,⁴ Ayman, Mahrouse,⁵ Essam, A. Nasr.

^{1,2,3,5}VSVRI. Abbasia, Cairo. ⁴Department of Public Health and Zoonoses, General Organization for Veterinary Services.

ABSTRACT

Brucellosis is one of the major zoonotic infections worldwide, continues to be a public health problem resulting in significant morbidity and economic losses. Accurate diagnosis must include laboratory tests that allow the direct *Brucella* isolation or indirect detection of antibodies. Practical serological tests are routinely used for the diagnosis of brucellosis by using specific antigens. In the present work, the used buffered acidified plate antigen (BAPA) was prepared from *B. abortus* biovar 1 strain S1119-3 according to the USDA SOPs. For this purpose, a total of 4100 bovine sera from five farms located in different governorates were screened for brucellosis. The effectiveness of prepared BAPA from strain 19 was compared with the standard BAPA and BCT antigens prepared from *B. abortus* strain 99. Evaluation was done by using a panel of known dilutions of the OIEISS (Office International des Epizootie International Standard Serum) as the international reference standard serum. There were no significant differences in results of the BAPA antigen prepared from strain 19 and the conventional antigen prepared from strain 99. The results concluded that, the vaccinal strain 19 can be used instead of strain 99 to prepare the BAPA antigen.

Key word: Bovine brucellosis, Brucella abortus strain 19, buffered acidified plate agglutination antigen.

(http://www.bvmj.bu.edu.eg)

BVMJ-36(1): 43-50, 2019)

1. INTRODUCTION

Brucellosis is a worldwide zoonotic infectious disease caused by Gram-negative bacteria from the genus Brucella. Animal brucellosis has been recorded in Egypt since 1939 and the prevalence of serological reactors on limited surveys has varied from one survey to another with a range between 16.5% to 23% in cattle and 7% to 10% in buffaloes. In 2002, the prevalence of positive serological reactors was 3% in cattle and 2% in buffaloes. Diagnosis of Brucellosis depends on bacteriological isolation from abortion material, udder secretions or tissues collected at post-mortem. Presumptive diagnosis can be made by assessing specific cell-mediated or serological responses to Brucella antigens (OIE, 2012). Among the rapid agglutination assays for brucellosis surveillance are the Buffered Acidified Plate antigen (BAPA) and the Rose -Bengal plate tests. The Rose -Bengal or brucellosis card test (BCT) is rapid qualitative one dilution plate agglutination at acidic pH of 3.65 ± 0.05 attained by lactate buffered phenol saline in which inactivated Rose –Bengal stained *Brucella abortus* cells are suspended and standardized. The test brings about agglutination of the non-agglutinogenic IgG₁distinctive of the longstanding Brucella infection (Alton etal., 1988). This adds up for more sensitivity and specificity to the test.It was used after the presumptive BAPA test, the Rose –Bengal plate test (RBPT) reduces the number of positive samples demanding confirmation. All of these tests are recommended for international trade in the (OIE Terrestrial Manual 2016). It is prospective that smooth Brucella abortus strain 19 (S-19) as a vaccinal strain, could be used as substitute for S.99 in to preparation of antigen.

The present work aimed to evaluate the specificity and sensitivity of buffered acidified plate agglutination antigen prepared from *B. abortus* S19 against corresponding antigens traditionally prepared from strain 99 used for diagnosis of bovine brucellosis in cows of non-vaccinated history and its relation to the sensitivity of Rose Bengal test.

2. MATERIALS AND METHODS

2.1. Brucella strains:

Smooth *Brucella abortus* biovar 1 strain 99(S-99) (Weybridge, England) and smooth *Brucella abortus* biovar 1 strain 19(S-19(CZ Veterinaria, S.A., Spain) were used.

2.2. Brucella antigens for serologic tests:

2.2.1. Conventional Rose Bengal and Buffer Acidified Plate antigens (BAPA) prepared from B.abortus (S-99) were supplied by Veterinary Serum and Vaccine Research Institute, Abbasia, Cairo (VSVRI). It prepared according to international rules regarding pH and PCV (Alton *et al.*, 1988 and OIE, 2016).

2.2.2. Buffer Acidified Plate antigen (BAPA) prepared from B. abortus

Strain 19 (S-19) was locally prepared according to Alton *et al.*, (1988).

2.3. Serum samples:

A total 4100 serum samples were collected from non-vaccinated cows against Brucellosis from five dairy farms in different governorates in Egypt as list in details in (Table 1). History of the farms reveled of these farms were of no history of vaccination against brucellosis. All examined animals did not show abortion or retained placenta. Animals which have positive results of tests were slaughtered serological immediately, in each farm sera were tested 2-7 times with various intervals as shown in (Table 2 to 6).

2.4. Serologic tests (Alton et al. 1988)

Rose Bengal (RB) test was performed, following the procedure described by Alton *et al.* (1988), through mixing of 25 ul of sera and 25 ul of the antigen. The plates were shaken for 4 min and any agglutination that appeared within this time was recorded as a positive reaction.

BAPA test was carried out, mixing 80 ul of sera and 30 ul of the antigen. The plates were shaken for 8 min and any agglutination that appeared within this time was recorded as a positive reaction

3. RESULTS

Results are summarized in Tables (3) to (11) and Figures (1) to (4). Tables (4) to (8) reveal the overall performance of all acidified plate agglutination test (conventional RBA, conventional BAPA and S.19 BAPA) in each of five farms of cattle. The performance characteristics included the positive and negative result of each agglutination tests, numbers of these tests, numbers of samples in each one and Length of time interval between each test.It respect of rose Bengal test, sensitivity and specificity of the two BAPA antigens preparations were calculated on (http://vassarstats.net/clin1.html) as shown in table (3).

Farms	Animals	5	Governorate	Numbers of sera collected	Management Nutration
	Breed	Age			biosalety level
First	Dairy	36 month	Beni -Seuf	1000	Medium
Second	Dairy	36 month	El-Beheira	600	Good
Third	Holstein Friesian	2 years	Alexandria Desert Road	1800	Very Good
Fourth	Dairy	36 month	Wadi El Natrun	350	Good
Fifth	Dairy	36 month	Hosh Essa El-Beheira	350	Medium
Total				4100	

Table (1): Epidemiologic data of dairy farms included in the current study

—	1 1	~~			1		e .	. 1		1		1.	1 . 1	<u>c</u>		•	1.0	c .	C	•	-	
· • •	hla		۰.	- I otol	num	201 0	\+ +/	antad	0.0111100	aamn	00	001	lootod	trom	001110	110	A11	Loront	tomo	110	LOT	745 +
- 124		/		11121		1000	11 16		VELINI	хинни		1.1.11			1 1 1 1 1 1 1				1 21 11 10		F U V	./
1 (1	1710	~ \ _		i viai	mum		/	Colou	ocium	Samo		UU1	IUUUU		00000		un i		Tatino		121	* L/L.
		· 、—																				/

Farms	Total Numbers	No.of Serological	No. of Samples	Time Interval
	of animals	Tests	in Every Tests	Between Every Test
			1st test (1000)samples	
			2nd test (976) samples	Every
			3rd test (967) samples	21
1st farm	1000	6 tests	4th test (961) samples	days
			5th test (952) samples	
			6thtest (945) samples	
			1st test (600)samples	
			2nd test (599) samples	Most of tests apply every
			3rd test (599) samples	3months except the period
2nd farm	600	6 tests	4th test (599) samples	interval between the 3rd
			5th test (597) samples	and 4th is 6 months.
			6thtest (597) samples	
			1st test 1800	
			2 nd test 1785	
		_	3 rd test 1775	21
3rd farm	1800	7 tests	4 th test 1770	days Interval Between
			5 th test 1/6/	Every Test
			6^{m} test 1/63	
			/" test1/61	
			1st test 350samples	3 months interval
4th farm	350	2 tests	2nd test 350samples	between
				2 tests
			1st test 350samples	
5th farm	350	3 tests	2 nd test 348 samples	3 months interval between
			3rd test 347 samples	every tests
Total	4100	24 tests		

Table (3): Calculation of sensitivity and specificity with respect of gold standard test.

-		Gold standard	test (cft)	Total
		Positive	Negative	
Test under evaluation	Positive	А	В	A+b
	Negative	С	D	C+d
Total		A+c	B+d	N (264)
Sensitivity= total positive/ tot	al samples	Relative Sensitivity= A/A	A+C	
Specificity= D/D+B		True positive (Positive P	redictive Value) =	= A/A+B
False positive= $A/A+B$		True negative (Negative	Predictive Value	= D/C+D
False negative= C/C+D				

3.1 Sero-diagnostic efficacy of antigens (conventional RBA, conventional BAPA and

S.19 BAPA) prepared from *B.abortus* biovar 1 (S.99, S.19) used for agglutination tests.

No. of serological tests	Results of Agglutination Tests									
No. of samples in	S.99	BAPA	S.19	BAPA	Rose Beng	gal Antigen	Т	otal		
each one	Positive	Negative	Positive	Negative	Positive	Negative	Positive	Negative		
First serological test 1000 samples	22	978	22	978	24	976	24	976		
Ĩ		21 days in	terval betwe	en first and se	econd test					
Second serological test 976 samples	9	967	9	967	9	967	9	967		
1		21 days in	terval betwe	en second and	d third test					
Third serological test 967 samples	6	961	6	961	6	961	6	961		
1		21 days in	nterval betwe	een third and	fourth test					
Fourth serological test 961 samples	9	952	9	952	9	952	9	952		
		21 days ii	nterval betwe	een fourth and	l fifth test					
Fifth serological test 952 samples	7	945	7	945	7	945	7	945		
		21 days in	nterval betwe	en fifth and s	ixth test					
Sixth serological test 945 samples	5	940	5	940	5	940	5	940		
Total	58	942	58	942	60	940	60	940		

Table (4): Performance of the conventional Rose Bengal test, (S.99) BAPA, (S.19) BAPA in the first farm.

Table (5): Performance of the conventional Rose Bengal test, (S.99) BAPA, (S.19) BAPA in the second farm.

No. of serological tests			F	Results of Ag	glutination	Tests		
No. of samples in each	S.99	BAPA	S.19	BAPA	Rose Ber	igal Antigen	Т	otal
one	Positive	Negative	Positive	Negative	Positive	Negative	Positive	Negative
First serological test								
600 samples	1	599	1	599	1	599	1	599
	3months int	erval betwee	en first and	second test				
Second serological test								
599 samples	0	599	0	599	0	599	0	599
	3months inte	erval betwee	n second ar	nd third test				
Third serological test								
599 samples	0	599	0	599	0	599	0	599
	6months int	erval betwee	en third and	fourth test				
Fourth serological test								
599 samples	2	597	2	597	2	597	2	597
-	3months int	erval betwee	en fourth ar	nd fifth test				
Fifth serological test								
597 samples	0	597	0	597	0	597	0	597
	3months in	terval betwe	en fifth and	l sixth test				
Sixth serological test								
597 samples	0	597	0	597	0	597	0	597
Total	3	597	3	597	3	597	3	597

No. of serological tests		Results of Agglutination Tests							
one	S.99	BAPA S.19BAPA		BAPA	Rose Ben	gal Antigen	Т	otal	
	Positive	Negative	Positive	Negative	Positive	Negative	Positive	Negative	
First serological test									
1800 samples	15	1785	15	1785	15	1785	15	1785	
	21	days interval	l between firs	t and second t	test				
Second serological test									
1785 samples	9	1776	9	1776	10	1775	10	1775	
	2	l days interva	l between sec	ond and third	test				
Third serological test									
1775 samples	5	1770	5	1770	5	1770	5	1770	
	2	l days interva	l between thi	rd and fourth	test				
Fourth serological test									
1770 samples	3	1767	3	1767	3	1767	3	1767	
	21	days interval	l between fou	rth and fifth to	est				
Fifth serological test	-		_						
1767 samples	3	1764	3	1764	4	1763	4	1763	
	21	days interval	l between fift	h and sixth tes	st				
Sixth serological test	-	1541	2	15.41	2	1541	2	15.41	
1763 samples	2	1761	2	1761	2	1761	2	1761	
Seventh serological test		15.00		15.00		1 7 40		15.00	
1761 samples	1	1760	1	1760	1	1760	1	1760	
Total	38	1762	38	1762	40	1760	40	1760	

Table (6): Performance of the conventional Rose Bengal test, (S.99) BAPA, (S.19) BAPA in the third farm.

Table (7): Performance of the conventional Rose Bengal test, (S.99) BAPA, (S.19) BAPA in the fourth farm.

No. of serological tests No.of samples in each		Results of Agglutination Tests									
one	S.99	BAPA	S.19	9BAPA	Rose Ber	Rose Bengal Antigen		Total			
	Positive	Negative	Positive	Negative	Positive	Negative	Positive	Negative			
First serological test											
350 samples	0	350	0	350	0	350	0	350			
	31	months interva	al between fii	rst and second	test						
Second serological test											
350 samples	0	350	0	350	0	350	0	350			
Total	0	350	0	350	0	350	0	350			

Table (8): Performance of the conventional Rose Bengal test, (S.99) BAPA, (S.19) BAPA in the fifth farm.

No. of serological tests No.of samples in each one	Results of Agglutination Tests										
I	S.99	S.99 BAPA S.19BAPA Rose Bengal Antigen						Total			
	Positive	Negative	Positive	Negative	Positive	Negative	Positive	Negative			
First serological test											
350 samples	2	348	2	348	2	348	2	348			
	3mo	onths interva	l between fi	rst and secon	nd test						
Second serological test											
348 samples	1	347	1	347	1	347	1	347			
	3mo	onths interva	l between se	econd and th	ird test						
Third serological test											
347 samples	0	347	0	347	0	347	0	347			
Total	3	347	3	347	3	347	3	347			

Table (9): Comparison between the diagnostic importance of strain 19 BAPA and conventional antigens (Rose Bengal Antigen and strain 99 BAPA) by using 4100 serum samples from naturally infected cattle in different farms.

Diagnostic Tests		Plate Agal	utination Tests 1	ising antigens pr	enared from		
Diagnostic Tests		I late Aggi	utiliation rests t	ising antigens pi	cpared nom		
Strains		Strai		Strain 19			
Agglutination							
Tests	RI	3T	BA	PA	BA	PA	
	Numbers of	Numbers of	Numbers of	Numbers of	Numbers of	Numbers of	
	positive	negative	positive	negative	positive	negative	
Samples	reactor	reactor	reactor	reactor	reactor	reactor	
First Farm	60	940	58	942	58	942	
Second Farm	3	597	3	597	3	597	
Third Farm	40	1760	38	1762	38	1762	
Fourth Farm	0	350	0	350	0	350	
Fifth Farm	3	347	3	347	3	347	
Total	106	3994	102	3998	102	3998	

Table (10): Total Positivity Percent in all Farms of all plate agglutination tests.

Diagnostic Tests		Plate Agglutination Tests using antigens prepared from								
Strains Agglutination		Stra	in 99		Strai	n 19				
Tests	RI	3T	BA	PA	BA	PA				
Total percent of	Positivity %	Negativity	Positivity %	Negativity	Positivity %	Negativity				
Positivity and		%		%		%				
Negativity										
First Farm	6%	94%	5,8%	94,2%	5,8%	94,2%				
Second Farm	0,5%	99,5%	0,5%	99,5%	0,5%	99, 5%				
Third Farm	2,22%	97,77%	2,1%	97,88%	2,1%	97,88%				
Fourth Farm	0%	100%	0%	100%	0%	100%				
Fifth Farm	0,85%	99,14%	0,857%	99,14%	0,857%	99,14%				
Total	2,6%	97,41%	2,5%	97,51%%	2,5%	97,51%				

Table (11): Results of BABA tests against Rose Bengal test as a Gold Standard test.

Tests	Antigens	Rose Bengal test	
		+ve	-ve
Buffered acidified plate	Buffered acidified	102	0
agglutination test	plate antigens prepared from S9		

Figure (1): Total positive reactor of Plate Agglutination Tests in all farms.

Figure (3): Total positivity percent of Plate Agglutination Tests in all farms

4. DISCUSION

The Rose Bengal plate agglutination, Buffered Acidified Plate Agglutination, complement fixation and indirect ELISA tests are usually recommended for screening flocks and individual animals for brucellosis. The complement fixation test is the only test prescribed for confirmation and international trade, but other tests as the Agar Gel Perception immunodiffusion test, and competitive ELISA, are useful for confirmation purposes. All over the world, all agglutination tests use the *B. abortus* strain 99 or 1119 antigens although in some cases different strains were used Erganis et al. (2005) used Brucella melitensis and Brucella suis S2 antigens. The Buffered Antigen Plate

Figure (4): Total Negativity percent of Plate Agglutination Tests in all farms.

Agglutination test (BPAT) has been widely used (Angus and Barton, 1984 and Nielsen and Yu, 2010) and also the Rose Bengal test (RBT) (Nielsen and Yu, 2010 and Morgan *etal.*, 1969).

Among the rapid agglutination assays for brucellosis surveillance and rapid field diagnosis are the Buffered Acidified Plate antigen (BAPA) and the Rose -Bengal plate tests. Both tests are well known as a pilot (screening), cheap, effective and rapid test for the diagnosis of brucellosis. It can be performed with the minimum of facilities, and the end result is read by the naked eye. Because of its apparent simplicity, high level of standardization of antigen and accuracy of reading is needed (Erganis *et al.*, 2005). After the presumptive diagnosis by BAPA test, using the Rose –Bengal plate test (RBPT) reduced the number of positive samples demanding confirmation. Each of these tests is recommended for international trade (OIE, 2016). It is prospective that smooth *Brucella abortus* (S-19) as a vaccinal strain, could be used as a substitute for S.99 in order to prepare Brucella antigens (Alton *et al.*, 1988).

In this study 4100 bovine serum were tested against all prepared rapid slide agglutination antigens. Rose Bengal test prepared from *B*. abortus \$99 was considered as a gold standard test to determine the sensitivity and specificity of tested BAPA antigens in absence of bacteriological isolation. Statistics in this study was considered the 95 % confidence intervals. In this study, No satisfactory differences were observed in specificity and sensitivity of tested BAPA antigens prepared from different brucella reference strains with constant PCV and pH. With respect to Rose Bengal test and according to results in table(10) and figure(1), sensitivity of different antigens preparations calculated were on (http://vassarstats.net/clin1.html)

with 95% Confidence Intervals (CI) as shown in (table3). Sensitivity of the Rose Bengal test was 2.59% where the sensitivity of the slide agglutination test using the two tested BAPA antigens was equal to each other (2.49%). Relative sensitivity, specificity, true positive and truce negative of both antigens were 96.2%, 50%, 2.49% and 97.51% respectively and prevalence of the diseases in tested farms were 1.31%. The results, in this study revealed that there are no significant differences between conventional antigens and these prepared from brucella abortus biovar 1 strain 19 as recommended by Alton et al., (1988).

5. CONCLUSION

According to the diagnostic performance parameters obtained under conditions of this study, It is concluded that the Buffer Acidified Plate antigen (BAPA) prepared from Brucella abortus biovar 1 strain19(S- 19) gave similar results to that antigen prepared from *Brucella abortus* (Weybridge) (S99) on sera collected from the naturally infected farms . So, *Brucella abortus* strain19 (S-19) and *Brucella abortus* strain 99 are indistinguishable for the preparation of Brucella antigens. So, *Brucella abortus* strain19 (S-19) could be used as replacement of *Brucella abortus* strain 99 to prepare the Buffer Acidified Plate antigen (BAPA) for large scale production of such antigens in Egypt.

6. REFERANCES

- Alton, G.G.; Jones, L.M.; Angus, R.D.; Verger, J.M.((1988):Techniques for the Brucellosis Laboratory; Instituttional de la Recherche Agronomique: Paris, France, 1988; pp. 17–62.
- Angus, R. D.; & Barton, C. E.; (1984). The production and evaluation of a buffered plate antigen for use in a presumptive test for brucellosis. *Developments in biological Standardization*, 56, 349-356.
- Erganis, H.H. ; Hadimli, H. ; Solmaz, (2005) : Brucella Melitensis and Brucella Suis
- Morgan, D.J. ;Mackinnon, J.R. ; Lawson, (1969) The rose bengal plate agglutination test in the diagnosis of brucellosis.
- Nielsen, K.; Yu. WL. (2010): Serological Diagnosis of Brucellosis.
- OIE: (2012): Seroprevalence of brucellosis in sheep and isolation of Brucella abortus biovar 6 in Kassala State Eastern Sudan.
- OIE:(2016). Chapter 2.1.4. Manual of Diagnostic Tests and Vaccines for Terrestrial Animals. Office International des Epizooties, Paris 99