Assessment of some food poisoning bacteria in ready-to-eat meals

Amani M. Salem¹, Nahla A. Abo El-Roos², Mona M. Abd EL-Fatah²

¹Food Control Department, (Meat Hygiene), Fac. Vet. Med. Benha University, Egypt
²Animal Health Research Institute, Shebine EL-Koom Branch, Egypt

ARTICLE INFO

Keywords
Bacillus cereus
Clostridium perfringens
E. coli
Fast food
Staph. aureus

Received 06/11/2019
Accepted 01/12/2019
Available On-Line 12/05/2020

ABSTRACT

A total of 100 random of ready to eat Shish tawook, Chicken fajitas, Beef fajitas and Hotdog (25 of each) were collected from different restaurants in Menoufia governorate. The obtained results revealed that the mean values of aerobic plate count (cfu/g) were 1.37×10⁴±1.74×10⁴ in Shish tawook, 3.24×10⁴±6.99×10⁴ in Chicken fajitas, 1.48×10⁵±9.2×10⁴ in Beef fajitas and 1.94×10⁵±2.65×10⁵ in Hotdog. The mean values of coliform count (cfu/g) were 4.54×10³±8.66×10³, 9.33×10³±1.49×10⁴, 2.42×10⁴±1.82×10⁵ and 1.63×10⁵±2.64×10⁵ in Shish tawook, Chicken fajitas, Beef fajitas and Hotdog, respectively. Also, these values of Staph aureus count (cfu/g) were 6.33×10³±7.06×10³, 1.60×10⁴±1.13×10⁴, 1.91×10⁴±1.28×10⁵ and 1.18×10⁵±8.91×10⁵ in the same products. The highest incidences of Clostridium perfringens were higher in Shish tawook (24%) and chicken fajitas (24%). In findings of multiplex PCR of Bacillus cereus showed that the nhe (non-hemolytic enterotoxin) and CytK (cytotoxin) K genes were positive for all isolated strains yielded a consistent fragment at 766 bp and 421bp, respectively.

1. INTRODUCTION

Street-vended foods (SVFs) are ready-made instant meals at relatively inexpensive prices and generally considered as potential vehicles for micronutrient fortification (Alimi et al., 2014). Street foods or fast foods have been defined by FAO as “Ready-to-eat (RTE) foods & beverages prepared and/or sold by vendors especially in streets & other public places for immediate consumption”. These foods are well appreciated by consumers, mostly by urban workers because of their taste, low cost, nutrient value & ready availability for immediate consumption. It includes fast foods, junk foods, snacks, beverages, meals, salads, sliced fruits & drinks for a wide variety of people (FAO/WHO, 2009).

The intact tissues of healthy slaughtered animals and birds are mostly sterile, but the meat may be contaminated during processing from the hands, knives, worker’s clothes, the gut, the hide or from the environment resulting in an inferior or even unfit quality for human consumption. Contaminated chicken, beef and meat products may constitute a public health hazard (Ahmed and Ismail, 2010 and Datta et al., 2012).

The following bacteria are the major foodborne pathogens: Clostridium botulinum, Escherichia coli, Staphylococcus aureus, and Bacillus cereus. (Gaia et al., 2017). The main sources of pathogenic bacteria in food are contaminated raw food, food handlers, dust, water, utensils & insects (Ray, 1996). RTE food has been implicated in cases of food poisoning or gastroenteritis in human beings (Eley, 1996). Hot foods have been the source of outbreaks of Staphylococcus aureus and Clostridium perfringens food poisoning (Hatakka, 1998). Staphylococcus aureus plays a great role in bacterial contamination of fast foods, because workers during preparation and processing may touch fast foods which are usually eaten without sufficient cooking or heating (Soliman, 1988).

Escherichia coli infection is highly prevalent and poses a major threat to human health in underdeveloped communities (Abu El naga- Azza et al., 2014). Meanwhile, it is commonly non-virulent, but some strains have adopted pathogenic or toxigenic virulence factors that make them virulent to human and animals (Gi et al., 2009 and Datta et al., 2012). And also, it is commonly used as surrogate indicator; its presence in food generally indicates direct and indirect fecal contamination (Clarence et al., 2009).

Bacillus cereus, a foodborne pathogen, causes two forms of foodborne diseases: emetic food poisoning which occurs when the pathogen produces cereulide, a heat resistant toxin, during vegetative cell growth in foods; and diarrheal food poisoning, which occurs when ingestion of high numbers of viable cells in food results in heat labile enterotoxin production in the small intestine of the host (Soni et al., 2016). Clostridium perfringens is sometimes called the “cafeteria germ” because it can be found in foods served in large amounts and kept at room temperature on poorly...
maintained steam tables or food warmers. Clostridium perfringens thrives in high-protein foods of animal origin, such as meat and meat products, these protein-containing foods, when kept at improper storage temperatures, between 54 °F (12 °C) and 140 °F (60 °C), provide the greatest risk of infection and disease from C. perfringens. This is because spores present after cooking can germinate and potentially grow to high, dangerous numbers. The danger zone exists between 109 °F (43 °C) and 117 °F (47 °C) (CDC, 2017). So, the aim of the current research was to investigate the bacterial profile of RTE beef and chicken products dishes these were Shish tawook, Chicken fajitas, Beef fajitas and Hotdog samples after cooking and before serving.

2. MATERIAL AND METHODS

2.1. Collection of samples:
A total of one hundred random samples of beef and chicken meat products including Shish tawook, Chicken fajitas, Beef fajitas, and Hotdog (25 of each) were collected from different restaurants in Menoufia governorate, Egypt. All samples were transported in cold bags and transported immediately to the laboratory under possible aseptic conditions without undue delay and examined as quickly as possible.

2.2. Preparation of samples:
were done as described in (APHA, 2001):
Twenty-five grams from each sample were homogenized with 225 ml sterile 0.1 % peptone solution in a sterile polyethylene bag for 1.5 minutes using stomacher (Lab-blender 400). One ml from the sample original homogenate was added to a test tube containing 9 ml 0.1% sterile peptone water to provide a dilution of 10². Similarly, a tenfold serial dilution was prepared. And the following bacteriological investigations were performed.

2.3. Aerobic Plate Count (APC) (cfu/gm):
It was carried out according to (ISO, 2013).

2.4. Coliform count (cfu/gm):
It was carried out according to FDA (2002).

2.5. Staphylococcus aureus count:
It was carried according to FDA (2001)

2.6. Identification of Staph. aureus:
It was carried out according to Mac-Faddin (2000).

2.7. Isolation and identification of E. coli:
The method described by ISO (2017)

2.8. Isolation of Bacillus Cereus:
The technique used was recommended by ISO (2004a).

2.9. Isolation and identification of Clostridium perfringens
It was carried according to ISO (2004b).

2.10. Lecithinase activity of C. perfringens
It was recovered on egg yolk agar media (Nagler’s reaction) according to Murrey et al. (2003).

2.11. Demonstration of C. perfringens toxins
It was adopted by application of dermonecrotic reaction in Guinea pig (Stere and Batty, 1975).

2.12. Polymerase Chain Reaction (PCR) of Bacillus cereus.
2.12.1. Extraction of DNA
It was carried cording to QIAamp DNA mini kit instructions.

2.12.2. Preparation of PCR Master Mix

2.12.2.1. Preparation of PCR Master Mix
It was carried according to PCR Master mix (Takara) Code No.RR310Klit.

2.12.2.2. Cycling conditions of the primers during cPCR.

2.12.3. DNA Molecular weight marker.

2.12.4. Agarose gel electrophoreses
It was carried according to Sambrooket al. (1989) with modification.

3. RESULTS

It is evident from the results recorded in tables (1&2), that the mean value of aerobic plate and coliform counts (cfu/g) of examined RTE beef and chicken product samples were 1.37×10⁶±1.74×10⁶ & 4.54×10⁶±8.66×10⁶ in Shish tawook, 3.24×10⁶±3.69×10⁶ & 9.33×10⁶±1.49×10⁷ in Chicken fajitas, 1.48×10⁵±1.92×10⁵ & 2.42×10⁵±1.82×10⁵ in Beef fajitas and 1.94×10³±2.65×10³ & 1.63×10³±2.64×10³ in Hotdog. In other words, there were significant differences (P ≤0.05) between the examined samples.

Table 1. Statistical analytical results of aerobic plate count (cfu/g) in the examined RTE beef and chicken meat product samples (n=25).

<table>
<thead>
<tr>
<th>Samples</th>
<th>Max</th>
<th>Min</th>
<th>Mean±S.D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shish tawook</td>
<td>4.5±106</td>
<td>2.3±104</td>
<td>3.7±106±1.74×10⁶</td>
</tr>
<tr>
<td>Chicken fajitas</td>
<td>8.5±106</td>
<td>5.6±104</td>
<td>7.0±106±3.69×10⁶</td>
</tr>
<tr>
<td>Beef fajitas</td>
<td>4.7±105</td>
<td>2.6±103</td>
<td>3.8±105±1.92×10⁵</td>
</tr>
<tr>
<td>Hot dog</td>
<td>8.3±10⁴</td>
<td>3.6±10³</td>
<td>5.4±10⁴±2.65×10³</td>
</tr>
</tbody>
</table>

S.D = Standard Deviation. There significant difference between products (P≤0.05).

Table 2 Statistically analytical results of coliform count (cfu/g) in the examined RTE beef and chicken meat product samples (n=25).

<table>
<thead>
<tr>
<th>Samples</th>
<th>Max</th>
<th>Min</th>
<th>Mean±S.D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shish tawook</td>
<td>5.5×10⁵</td>
<td>3.1×10⁴</td>
<td>4.54×10⁵±1.49×10⁵</td>
</tr>
<tr>
<td>Chicken fajitas</td>
<td>5.6×10⁵</td>
<td>3.5×10⁴</td>
<td>9.33×10⁶±1.92×10⁵</td>
</tr>
<tr>
<td>Beef fajitas</td>
<td>5.6×10⁵</td>
<td>3.3×10⁴</td>
<td>2.42×10⁵±1.82×10⁵</td>
</tr>
<tr>
<td>Hot dog</td>
<td>7.9×10⁴</td>
<td>2.5×10³</td>
<td>1.63×10³±2.64×10³</td>
</tr>
</tbody>
</table>

S.D = Standard Deviation. There significant difference between products (P<0.05).

As shown in table (3) results illustrated that the highest incidence for isolation of Staphylococcus aureus in the examined samples of street vended meat products was recorded in the examined Chicken fajitas samples at percentage of 40% with the mean value of 1.60×10⁴±1.13×10⁴ cfu/g. While the lowest incidence was recorded in Hotdog samples at percentage of 20% with the
mean value of 1.18×10⁴±8.91×10³ cfu/g. The obtained results specify that there were significant differences between samples (P ≤ 0.05).

Table 3 Incidence and count of *Staphylococcus aureus* (cfu/g) of the examined RTE beef and chicken meat product samples (n=25).

<table>
<thead>
<tr>
<th>Samples</th>
<th>Incidence</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shish tawook</td>
<td>9</td>
<td>2.1±10⁴</td>
</tr>
<tr>
<td>Chicken fajitas</td>
<td>10</td>
<td>2.3±10⁴</td>
</tr>
<tr>
<td>Beef fajitas</td>
<td>6</td>
<td>3.6±10⁴</td>
</tr>
<tr>
<td>Hot dog</td>
<td>5</td>
<td>2.3±10⁵</td>
</tr>
</tbody>
</table>

S.D = Standard Deviation. There significant difference between products (P ≤ 0.05).

Moreover, results obtained in table (4) illustrated that, the highest incidence of *E. coli* was recorded in Chicken fajitas (32%), while lower incidence was in Hotdog (16%).

Also, results in tables (5) showed that the incidences of *Bacillus cereus* and *Clostridium perfringens* were 16% & 24% in Shish tawook, 28% & 24% in Chicken fajitas, 24% & 16% in Beef fajitas and the same incidence (20%) in Hotdog.

Table 4 Serotyping of Enteropathogenic *E. coli* isolated from the examined samples of RTE beef and chicken meat product samples (n=25).

<table>
<thead>
<tr>
<th>E. coli strains</th>
<th>Type</th>
<th>Shish tawook</th>
<th>Hotdog</th>
<th>Chicken fajitas</th>
<th>Beef fajitas</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>No.</td>
<td>%</td>
<td>No.</td>
<td>%</td>
</tr>
<tr>
<td>O:111:H1</td>
<td>EHEC</td>
<td>1</td>
<td>4</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>O:111:H2</td>
<td>EPEC</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>O:124:H6</td>
<td>ETEC</td>
<td>1</td>
<td>4</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>O:124:H6</td>
<td>EPEC</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>O:111:H6</td>
<td>EHEC</td>
<td>1</td>
<td>4</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>O:111:H4</td>
<td>EPEC</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>O:124:H1</td>
<td>EPEC</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>O:124:H2</td>
<td>EPEC</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>O:111:H2</td>
<td>EPEC</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>O:124:H2</td>
<td>EPEC</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>4</td>
</tr>
</tbody>
</table>

Identification of *Bacillus cereus* isolated from samples by PCR of *Bacillus cereus* showed that the *nhe* (non-haemolytic enterotoxin) and *CytK* (cytotoxin) genes were positive for all isolated strains (table, 6) yielded a consistent fragment at 766 bp (Photograph 1) and 421 bp (Photograph 2), respectively.

4. DISCUSSION

Various factors contribute to the outbreaks of the food borne illness. The main ones are inadequate food manipulation, improper holding temperatures (failing to properly refrigerate food), inadequate cooking, contaminated equipment (failure to clean and disinfect kitchen or processing plant equipment) and poor personal hygiene. Other factors that may contribute to the food borne illness include preparing food a day or more before
serving with improper holding and reheating, cross contamination (from raw to cooked products) and adding contaminated ingredients to the previously cooked food. Aerobic plate count can provide useful information about the remaining shelf-life of the food in question, and thus highlight potential problems of storage and handling since production (HPA, 2009) and a general indication of the microbiological quality of food not safety. So, High aerobic plate count may indicate unhygienic preparation; inappropriate storage conditions or suggests possible poor temperature control (NSW/FA, 2009).

It is evident from the obtained result in table (1) that the examined samples of chicken fajitas were the most contaminated ones followed by Shish tawook, Hotdog and beef fajitas. This could be attributed to the fact that Chicken fajitas may receive more handling during preparation as well as addition of spices and vegetables which may be contaminated with larger number of microorganism. Such variations may be attributed to differences in quality of meat from the sanitary point of view or ingredients added to meat as vegetables and cheese, the hygienic standard during processing or time and temperature of storage and retailing of product may play a role.

Lower results of APC in Chicken fajitas were recorded by Hamedy-Taghreed (2016) (2.22×10⁵±8.4×10⁴cfu/g) and Shaltout et al. (2019) (4.9×10⁵±1.5×10⁴cfu/g). In Shish tawook lower results of APC were recorded by Hussein et al. (2018) (7×10⁴± 2.8×10⁸). While higher results of APC in Beef fajitas were recorded by Salem-Nehad et al. (2016) (2.7×10⁷±1.5×10⁸). While, nearly similar results of APC in Hotdog were reported by Oranusi et al. (2011) (2.0×10⁵ to 5.4×10⁵) and higher results obtained by Oluwafemi and Simisaya (2006) (2.06-2.80 ×10⁵cfug).

Coliforms are used as indicator of water pollution or as a general indicator of sanitary condition in the food processing environment (Feng et al., 2002). Also, high Coliforms count indicates poor hygienic quality of meat and is significant as indicator of fecal contamination. Coliforms also have the ability to grow well over wide range of temperature below 10°C up to 46°C (Gill et al., 1996).

Accordingly, the examined samples of Chicken fajitas were the most contaminated ones. This could be attributed to the neglected sanitary measures during their processing, handling and serving of such products.

Lower results of coliform count were recorded by Hamedy-Taghreed (2016) (31.90±21.1MPNg) in Chicken fajitas. In Shish tawook lower coliform count were recorded by Eid-Amal et al. (2014) (5.1×10²±6.6×10⁴), USDA-FSIS, (2012) (2.5×10²) and Hussein et al. (2018) (0.15×10²±0.04x10²). While higher coliform count in Shish tawook was reported by Sampers et al. (2010) (2.51×10⁷). In Beef fajitas lower coliform results were recorded by Salem-Nehad et al. (2016) (5.0×10⁴±2.1x10⁵), and in Hotdog recorded by Lopasovsky et al. (2016) (less than 10 to 1.4×10²) and Oranusi et al. (2011) (1.0x10² to 5.0×10⁵).

The presence of Staph. aureus in heat treated food is a pointer to largely poor personal hygiene, improper storage facilities, and unhygienic environment (Achi and Madubuike, 2007). Total S. aureus count can be taken as index of sanitary conditions under which the meat and its products are manufactured and handled(Potter, 2001).The presence of S.aureus or its enterotoxins in processed food is generally an indication of poor sanitation and poor personal hygiene (Reginald et al., 2001).

The obtained results showed that the examined samples of Chicken fajitas were the most contaminated one. Presence of Staphylococci in Chicken fajitas samples may be attributed to inadequate heat treatment, unhygienic handling practices through the workers who can transfer staphylococci on their hands and using dirty equipment's for slicing.

The lower results were recorded by Mohamed-Eman and El Zahaby- Dina (2015) (3x10² ± 0.18x10³) with incidence of 13.33% and Hamedy-Taghreed (2016) (90.0±64) with incidence of20% in Chicken fajitas. Also, In Shish tawook lower Staph. aureus was reported by Eid-Amal et al. (2014)(2.6×10² ± 7.4x10²) and Mousa et al. (2019) (25%). While, higher mean value of Staph. aureus was reported by Sampers et al. (2010) (7.9 x10³).

In Beef fajitas lower incidence were reported by Salem-Nehad et al. (2016) (14%). In Hotdog lower results of Staph. aureus was obtained by Lopasovsky et al. (2016)(3%). On the other hand, higher results obtained by Kothe et al. (2016) (25%) and Oranusi et al. (2011) (35%). Table (4) revealed that the highest incidence of Enteropathogenic E. coli was represented in Chicken fajitas while the lowest incidence was in Hotdog.

The obtained results in RTE Shish tawook was nearly similar to Naglaa et al. (2009) (20%), While lower results were reported by Elbayoumi et al. (2018) (14.3%), Hussein et al. (2018) (6.7%), and Mousa et al. (2019) (16.7%). Lower results of examined RTE Chicken fajitas were reported by Mohamed-Eman and El Zahaby-Dina (2015) (20%); While higher results were recorded by Aalaa Eldin et al. (2018) (42%).

Lower results for examined RTE Hotdog were obtained by Oranusi et al. (2011) (11%) and Al-Mutairi (2011)(12%). On the other hand higher results obtained by Maarouf and Nassif-Marionette (2008) (29.2%), and Mansour-Amal (2013) (40%).

Lower incidence of isolated E.coli for examined RTE Meat fajitas was recorded by Hassani-Fatin et al. (2015) (13.33%).

The variation in the results between different authors may be due to the differences in the effectiveness of hygienic measures applied during cooking, handling and serving of food.

In RTE Shish tawook Elbayoumi et al. (2018) could isolate serovars O127:H2 (5.7%), O127:H5 (5.7%) and O125:H2 (5.7%) EHEC. and Hussein et al. (2018) isolate O5 (5.3%), while, Mousa et al. (2019) isolate EPEC O55K11 (50%), EIEC O125K7 (25%) and ETEC O127K9 (25%).

While in RTE Hotdog Darwish et al. (1991) could isolate serovars (O123;K7; O124;K9; O128;K68 and O111;K5) and Nashed-Heba (1993) (O55; K9 (B7)), while El-sherif-Amal (2009) could isolate OR:H6(one strain) and O125:H7(two strains), also Al-Mutairi (2011)O119 (one strain) and O25:k11 (two strains).
Transmission of *C. perfringens* may occur via foodborne, waterborne, animal contact, person-to-person, and others, at the point of consumption. *C. perfringens* transmission was referred primarily to food through unhygienic food handling and cross-contamination in the processing pathway (Butler et al., 2015). Because of its ability to form a spore, this microorganism is able to survive adverse conditions such as aerobic and food processing procedures. Its spores may contaminate meat and meat products either before processing and survive cooking or after processing due to unhygienic handling of prepared food (Santos et al., 2002 and Potter, 2001).

As shown in table (5) the incidence of *Bacillus cereus* and *Clostridium perfringens* were higher in RTE Chicken fajitas.

In RTE Beef fajitas Salem-Nehad et al. (2016) isolate *bacillus cereus* in the incidence of (12%) and *Clostridium perfringens* in the incidence of (9%). In RTE Chicken fajitas Shehata-Eraa (2018) could isolates *bacillus cereus* in the same incidence of (28%) and Samaha et al. (2012) (8%).

In Hotdog Oranusi et al. (2011) isolate Bacillus cereus in higher incidence of (25%). Also, Oluwafemi and Simisaye (2006) could isolate *bacillus cereus* and *Clostridium perfringens* from hot dog.

Chicken fajitas is the most contaminated product, the high prevalence rates reported here might be due to poor manufacturing processes (poor temperature control) during processing and storage, inadequate cooking of product and bad cleaning and disinfection of both equipment and surfaces like floors and tables or poor personal hygiene and use of untrained personnel.

PCR amplification of nhe gene in isolated *Bacillus cereus* strains showed that the genes encoding the enterotoxin nhe are detectable in all isolates these results can be nearly similar to that obtained by (Anderson-Borge et al. (2001), Hansen and Hendriksen (2001) and Wijnands et al. (2006)). Also, the result of PCR amplification of ctk gene substantiated what has been reported by Zhang et al. (2016) and Rosenquist et al. (2005). As, they can detect genes encoding the enterotoxin ctk in isolated strains of *Bacillus cereus* from RTE food.

Nonhemolytic enterotoxin typically gives relatively mild and short lived diarrheal syndrome. cytotoxin K enterotoxin, the single-component cytotoxin K (cytk) has so far only been reported to be involved in a single case of severe food poisoning outbreak including the death of three persons Lund et al. (2000).

All isolates appear to have two enterotoxin genes (combinations of virulence factors are found), which mean that all these *B. cereus* strains are potentially pathogenic. These findings were nearly agreed with Wijnands et al. (2006) found the combination of virulence factors nhe gene and ctk gene in isolated strain of *Bacillus cereus* from RTE food.

5. CONCLUSIONS

The obtained results in the present study concluded that the examined Chicken fajitas samples showed higher contamination than other products. While *Staph. aureus* is the most microorganisms isolated from all examined samples. So, it has further evidence that the undesirable level of contamination which might have acquired from the environment and to obtain wholesome, safe and sound meat, the Hazard Analysis and Critical Control Point system (HACCP) must be adopted.

6. REFERENCES