Incidence of Enterobacteriaceae in some freshwater fishes

Rabab Rawash1, Saad M. Saad1, Fatin S. Hassanin1, Mohamed A. Hassan1, Maarouf A. Afifi2

1 Department of Food Hygiene and Control, Faculty of Veterinary Medicine, Benha University, Egypt.
2 Food Hygiene Department, Animal Health Research Institute, Benha Branch, Egypt

ABSTRACT

It is evident that members of enterobacteriaceae are one of the most incriminated bacterial food poisoning causes. Salmonella serovars and pathogenic E. coli may be responsible for more than 15% of reported annual food poisoning cases; and with increasing price of beef and poultry meats, and consumer’s fish meat desire and demand. So, this study aimed to spot the light on the prevalence of enterobacteriaceae members in some raw Nile fishes. 100 samples of Oreochromis nilotica (tilapia) and Bagrus bayad (Bayad), each of 50, were collected from different retail markets in Benha city, Qalubya governorate, Egypt. Results revealed that 94% and 16% of examined samples were contaminated with enterobacteriaceae and coliform bacteria, with mean counts 2.65×10^3 and 1.81×10^1 CFU/g for tilapia samples, and 2.07×10^1 and 1.74×10^3 CFU/g for bayad samples, respectively. Bacteriological classification of enterobacteriaceae isolates revealed detection of Citrobacter diversus, Citrobacter freundii, E. coli, Enterobacter aerogenes, Enterobacter cloacae, Klebsiella oxytoca, Proteus mirabilis, Proteus vulgaris, Yersinia enterocolitica in variable percentages. 13% of examined samples were contaminated with E. coli, while 4% of examined tilapia samples only were contaminated with Yersinia enterocolitica. It is obvious that raw fishes may harbor bacterial contamination of significant health importance, so thorough cooking and processing hygienic practices are strongly recommended.

1. INTRODUCTION

Fish had long been regarded as a desirable and nutritional source of high-quality protein and generous supply of minerals and vitamins constituting the major part of human diet (Hastein et al., 2006). Tilapia nilotica and Bagrus bayad are two of the most widely distributed aquaculture commodities in Egypt (Sadek et al., 2006). There has been a large increase in demand for tilapia and bayad, resulting in the increased production of both fishes through the method of high stocking density. However, the high stocking density method leads to rapid deterioration of water quality and increased fish stress (Sebastião et al., 2015), resulting in bacterial invasion and proliferation in fish tissues. Although, when a healthy fish is caught, the fish musculature is considered free of microbial contamination as its immune system prevents bacteria to proliferate easily whereas after death the immune system of fish collapses allowing easily penetration of microorganisms into the flesh (Kasing et al., 1999). The penetration increase in case of fish caught from polluted area where there are high densities of bacteria (Sumner and Rose, 2002). Thus, many investigators convinced that fish from polluted environment may be passive carriers of pathogenic bacteria to man (Samaha et al., 2004). In addition, contamination may be occurred during marketing at ground level or by hands (Sumner and Rose, 2002).

Enterobacteriaceae are a large, diverse heterogeneous group of rod-shaped Gram-negative bacilli that survive under aerobic conditions and normally inhabit the intestine of man and animals; some are motile while some others are not. The family includes many genera, some of which are part of the normal flora and incidentally causative; some are saprophytic and others are pathogenic like E. coli which also is a major cause of food poisoning (Goldberg et al., 1992). Y. enterocolitica is a rod-shaped bacillus widely distributed in aquatic environments, both in seas and rivers (Sumner and Rose, 2002). Enterobacteriaceae species are common inhabitants of water, soil, and food products of plant and animal origin, causing disease in man and animals (FAO, 1990). Salmonella and Enterobacteriaceae species can colonize fish, both live and dead, therefore, it is possible that foodborne infection will occur in humans after consuming infected fish (Cebolla et al., 2003). Given that some bacteria develop different virulent strains, it is necessary to monitor the fish industry for these particular Enterobacteriaceae species.

It is evident that the occurrence of fecal coliforms in fish was defined as a marker for the pollution level of the aquatic environment, they live in (CDC, 2002). Enterobacteriaceae are a large, diverse heterogeneous group of rod-shaped Gram-negative bacilli that survive under aerobic conditions and normally inhabit the intestine of man and animals; some are motile while some others are not. The family includes many genera, some of which are part of the normal flora and incidentally causative; some are saprophytic and others are pathogenic like E. coli which also is a major cause of food poisoning (Goldberg et al., 1992). Y. enterocolitica is a rod-shaped bacillus widely distributed in aquatic environments, both in seas and rivers (Sumner and Rose, 2002). Enterobacteriaceae species are common inhabitants of water, soil, and food products of plant and animal origin, causing disease in man and animals (FAO, 1990). Salmonella and Enterobacteriaceae species can colonize fish, both live and dead, therefore, it is possible that foodborne infection will occur in humans after consuming infected fish (Cebolla et al., 2003). Given that some bacteria develop different virulent strains, it is necessary to monitor the fish industry for these particular Enterobacteriaceae species.
E. coli as a microorganism act as a public health hazard if present where they cause food poisoning. Therefore, the present study was conducted to investigate the presence of Enterobacteriaceae species in retailed Tilapia nilotica and Bagrus bayad fishes from Benha city markets.

2. MATERIAL AND METHODS

2.1. Collection of Samples:
A grand total of 100 random specimens of raw chilled freshwater fishes represented by Tilapia nilotica and Bagrus bayad, 50 of each, were collected randomly, along a year (March 2018 to February 2019), from retails and supermarkets in Benha city, Qalyubia governorate, Egypt. The collected samples were kept frozen and transported to the lab where subjected to bacteriological examinations to evaluate the incidence of enterobacteriaeae contamination.

2.2. Preparation of samples according to (APHA, 2013)
Twenty-five grams of the sample were mixed with 225 ml sterile 0.1% peptone water. The contents were homogenized at Stomacher (M A 106402, France, 450 to 640 strokes per minute) for 2 minutes, and 1 ml of the mixture was transferred into separate tube each containing 9 ml sterile 0.1% peptone water, from which tenth-fold serial dilutions were prepared. The prepared samples were subjected to the following bacteriological examination:

2.3. Total Enterobacteriaceae count (ICMSF, 1996)
0.1 ml from each of the previously prepared dilution was spread on Violet Red Bile Glucose agar (VRBG) and incubated at 37 °C for 24 hours. All purple colonies were counted, and the average number of colonies was determined.

2.3.1. Identification of family Enterobacteriaceae
It was conducted according to Cowan and Steel (1974) performed by Gram’s stain, Biochemical tests, and motility tests.

2.4. Determination of coliform count (ISO 4832, 2006).
One ml from each of the previously prepared dilution was cultured in Violet Red Bile agar (VRBA) by pour-plate technique and incubated at 37 °C for 24 hours. All purple colonies were counted, and the average number of colonies was determined.

2.5. Isolation and identification of E. coli
2.5.1. Isolation of E. coli according to (ISO 16649-2, 2001).
1 ml from each of the previously prepared dilution was cultured in Tryptone-Bile-Glucoronic Agar (TBX) by pour-plate technique and incubated at 44 °C for 24 hours. All bluish-green colonies were counted, and the average number of colonies was determined.

2.5.2. Identification of E. coli.
2.5.2.1. Gram’s Stain according to (Cruickshank et al., 1975).
2.5.2.2. Biochemical tests (MacFaddin, 2000).
2.5.2.3. Serological Identification according to Kok et al. (1996).

2.6. Isolation and identification of Salmonellae
2.6.1. Isolation of salmonellae according to (ISO 6579, 2017).

2.6.1.1. Pre-enrichment in non-selective buffered peptone water broth, which then incubated at 37±1 °C for 18±2 hours.
2.6.1.2. Enrichment in Rappaport Vassiliadis broth (RV broth), then the tube was incubated at 43°C for 24 hours.
2.6.1.3. Selective Plating on Xylose lysine Desoxy cholate (XLD) agar and Brilliant Green agar. The plates were incubated at 37°C for 24 hours. Plates were examined for suspected Salmonella colonies which appeared as red with black centers on XLD agar and pink on Brilliant Green agar.

2.6.2. Identification of salmonellae
2.6.2.1. Gram’s Stain (Cruickshank et al., 1975).
2.6.2.2. Biochemical Identification (Krieg and Holt, 1984).
2.6.2.3. Serological identification (Confirmatory test) according to (Kauffmann, 1974).

2.7. Statistical analysis: of the obtained results was performed according to Feldman et al. (2003).

3. RESULTS

Results demonstrated in table (1) showed that Enterobacteriaceae were equally detected at rate of 94% of the examined tilapia and bayad samples, with mean values 2.65×10³ and 2.07×10³ cfu/g, respectively. The statistical results revealed that, there was a significant (P ≤ 0.05) increase of Enterobacteriaceae counts of Nile tilapia when compared with Bayad samples. Following results summarized in table (2) showed that coliform bacteria were detected in the examined tilapia and bayad samples with incidence of 14 and 18%, with mean values 1.81×10¹ and 1.74×10¹ cfu/g, respectively. The statistical results revealed that, there is no significant difference between tilapia and bayad samples. Table (3) demonstrated a detailed bacteriological classification of Enterobacteriaceae isolates which revealed detection of Citrobacter diversus, Citrobacter freundii, E. coli, Enterobacter aerogenes, Enterobacter cloacae, Klebsiella oxytoca, Proteus mirabilis, Proteus vulgaris, and Yersinia enterocolitica in different ratios. On the other hand, Salmonella sp. not detected in any of the examined tilapia and bayad samples.

Table (4) showed the serotyping of isolated E. coli strains revealed detection of O27:H2, O63:H2, and O158:H4 with incidences of 8, 2, 4% and 6, 2, 4% for tilapia and bayad samples, respectively. Moreover, following (EEC, 2005) specifications, 14% and 4% of the examined tilapia samples were rejected due to detection of E. coli and Y. enterocolitica; while 12% of bayad samples were rejected due to detection of E. coli as shown in table (5).

Table 1 Total Enterobacteriaceae counts cfu/g in the examined samples of Nile fish (n=50).

<table>
<thead>
<tr>
<th>Types of Samples</th>
<th>Positive No.</th>
<th>%</th>
<th>Min.</th>
<th>Max.</th>
<th>Mean ± S.E.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nile tilapia</td>
<td>47</td>
<td>94.0</td>
<td>3.0×10³</td>
<td>4.9×10³</td>
<td>2.65×10³ ± 1.6×10³</td>
</tr>
<tr>
<td>Bayad</td>
<td>47</td>
<td>94.0</td>
<td>3.0×10³</td>
<td>4.5×10³</td>
<td>2.07×10³ ± 1.04×10³</td>
</tr>
<tr>
<td>Total*</td>
<td>94</td>
<td>94.0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Mean value within a column followed by difference letters where significant difference (P ≥ 0.05). Total*: number and percentage in relation to total number of samples (100).
4. DISCUSSION

Enterobacteriaceae especially food poisoning members represent a major and important group of microorganisms because of their frequent occurrence and activities that may have a negative impact on seafood quality. The presence of human pathogenic bacteria in fish and seafood may be attributed to contamination during processing. Several bacteria are, however, reported to cause infection and mortality in both fish and humans (Hastein et al., 2006).

Results illustrated in table (1) showed the incidence and counts of Enterobacteriaceae in the examined samples which were nearly similar to those reported by Engelbrecht et al. (2008) and El-Shabasy (2009) (3.8x10^3 and 2.8x10^3 cfu/g for tilapia and bayad samples, respectively). Lower results were recorded by Gaafar (2007) (7.8x10^3 and 6.2x10^3 cfu/g for tilapia and bayad samples, respectively). On the other hand, the present results were higher than those recorded by El-Sherief (2015) (7.6x10^3 cfug in examined tilapia samples), and Hassan (2013) (2.9x10^3 cfug for bayad samples).

Following results of coliform tabulated in table (2), results were in agree with Engelbrecht et al. (2008) and El-Shabasy (2009) (0.98x10^3 and 2.4x10^3 cfug for tilapia and bayad samples, respectively), while were lower than those recorded by Gaafar (2007) (2.9x10^3 and 1.1x10^3 CFU/g for tilapia and bayad samples, respectively), also, they were higher than those recorded by Naser (1991) (5.8x10^2 cfug for tilapia samples).

Results of bacteriological classification of the isolated Enterobacteriaceae isolates as summarized in table (3) were in agreement with those recorded by Abo Samra (2001) who isolated Enterobacter cloacae, Enterobacter aerogenes, Citrobacter freundii, Proteus mirabilis, Proteus vulgaris and E. coli. The detected values of coliform bacteria in fish and seafood may be attributed to contamination during processing. Several authors have a negative impact on seafood quality. The presence of human pathogenic bacteria in fish and seafood may be attributed to contamination during processing. Several bacteria are, however, reported to cause infection and mortality in both fish and humans (Hastein et al., 2006).

Results illustrated in table (1) showed the incidence and counts of Enterobacteriaceae in the examined samples which were nearly similar to those reported by Engelbrecht et al. (2008) and El-Shabasy (2009) (3.8x10^3 and 2.8x10^3 cfu/g for tilapia and bayad samples, respectively). Lower results were recorded by Gaafar (2007) (7.8x10^3 and 6.2x10^3 cfu/g for tilapia and bayad samples, respectively). On the other hand, the present results were higher than those recorded by El-Sherief (2015) (7.6x10^3 cfug in examined tilapia samples), and Hassan (2013) (2.9x10^3 cfug for bayad samples).

Following results of coliform tabulated in table (2), results were in agree with Engelbrecht et al. (2008) and El-Shabasy (2009) (0.98x10^3 and 2.4x10^3 cfug for tilapia and bayad samples, respectively), while were lower than those recorded by Gaafar (2007) (2.9x10^3 and 1.1x10^3 CFU/g for tilapia and bayad samples, respectively), also, they were higher than those recorded by Naser (1991) (5.8x10^2 cfug for tilapia samples).

Results of bacteriological classification of the isolated Enterobacteriaceae isolates as summarized in table (3) were in agreement with those recorded by Abo Samra (2001) who isolated Enterobacter cloacae, Enterobacter aerogenes, Citrobacter freundii, Proteus mirabilis, Proteus vulgaris and E. coli.

The incidences of E. coli were nearly similar to those recorded by El-Sherief (2015) and Aki (2009) (12% and 16% for tilapia and bayad samples), while were lower than those recorded by Hassan (2013) (57.1 and 100% of examined tilapia and bayad samples, respectively), also, they were higher than those recorded by Ibrahim (2014) and Gaafar (2007) (8% for both tilapia and bayad samples).

The detected values of Y. enterocolitica detection in tilapia samples were nearly similar to these recorded by Aki (2009) (4%), while were lower than those recorded by Ammar (2016) (20%). The failure in detection of Y. enterocolitica from bayad samples is in agree with Aki (2009).

In addition, the failure of Salmonella detection in both tilapia and bayad samples is in agree with Papadopoulou (2007), while disagreed with Hassan (2013) and Ibrahim (2014) who detected Salmonella in examined samples at rate of 57.1 and 8%, respectively.

Variations between authors may be attributed to the differences in pollution levels of the environment of fish rearing, mishandling and improper storage practices, and the immunity status of the fish.

5. CONCLUSIONS

It could be concluded that the presence of Enterobacteriaceae, coliform and their members indicating several faults and improper practices of rearing, mishandling and improper storage properties during catching and marketing, that highlighted low hygienic knowledge and encourage authorities for more restrictions and observations, and recommend thorough heat treatment before consumption.
ACKNOWLEDGEMENT
Authors pleased to thank all members of food control department, Faculty of Veterinary Medicine, Benha University and members of Animal Health Research Institute, Benha Branch for their kindly support and encouragement.

CONFLICT OF INTEREST
The content of this report solely reflects the opinions of the authors, and we report no conflicts of interest. FAPESB did not play a role in the research or writing of the paper.

6. REFERENCES


35. Sebastian, E.A., Furlan, L.R., Hashimoto, D.T., Pilarski, F. 2015. Identification of bacterial fish pathogens in Brazil by...